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Synopsis

Introduction

The dynamical systems theory, which deals with the temporal evolution of the state

of interacting constituent entities of a system, forms the foundation of this the-

sis. The study of dynamics originated in the 1600s when Newton and Leibniz de-

veloped calculus to study the trajectories of celestial bodies [4]. However, before

the twentieth century, investigation of a dynamical system could only be achieved

for smaller cases due to the requirement of sophisticated mathematical techniques

to solve higher-order systems. Only recent advancements in the fast computing

and easily available vast amount of information enabled us to investigate and solve

large complex systems found in the real-world. Network science, which describes

the interaction architecture among the constituent entities of a system, helped us in

mathematically modeling complex systems in terms of networks. A network which

is a collection of nodes (or the constituent entities) and edges (interactions or links

among the entities), sketches the collective dynamics of the entire system in terms

of coupled differential or difference equations. Starting from cognitive functions

arising from dynamics of the neural networks to the formation of public opinions

arising from dynamics of the social networks, the wide range and variety of applica-

tions demonstrate the baffling scale in which network science operates. Moreover,

it shows the reason for the success of network science in providing a combined

mathematical framework to investigate complex systems across fields spanning the

entire spectrum of science and technology [9].

In the late twentieth century, the phenomenon of synchronization, which at heart

narrates a correlated dynamics between the interacting entities, has emerged as one

of the biggest success stories in the study of dynamics on networks, building on

the works on dynamical systems theory, mean-field theory, manifold theory, and

bifurcation theory [11]. However, at the dawn of the twenty-first century, an exotic

partial synchronization state, termed as chimera, describing dynamical symmetry
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breaking in an identically coupled network has been reported, attracting consider-

able interest in the past two decades and forming the main focus of this thesis.

A chimera state refers to a hybrid dynamics, which displays coexistence of coher-

ence - incoherence in a network of identical entities coupled in a symmetric fashion.

In 2002, Kuramoto and Battogtokh reported a peculiar coexistence of coherent and

incoherent dynamics on an array of identical phase oscillators arranged in a reg-

ular network, under certain special conditions [2]. Later on, Abrams and Strogatz

christened this dynamical state as a chimera and provided a firm understanding over

its strange appearance [3]. In the last two decades, the chimera state has been in-

vestigated both theoretically and experimentally, providing new understanding and

insights as well as applications [32] to various fields including neuroscience.

However, the majority of the studies is primarily focused on exploring chimera

states in various systems having diverse underlying dynamics. Minimal emphasis

has been paid to incorporate the new-found multiplex structure of the networks in

the investigation of the emergent chimera state. The recent multiplex approach to

network science, incorporating the existence of various types of interactions (edges)

between the same pair of entities (nodes) by segregating them in different layers,

provided a more realistic portrayal of the complex systems [87]. Furthermore, the

inclusion of multiplex framework presents a wide variety of dynamical behaviors,

which may be impossible to capture through single-layer framework [53].

This thesis aims to provide a complete report on the emergence of the chimera state

in multiplex networks adding a new dimension to the study of chimera state. We

first report the appearance of chimera state in multiplex networks demonstrating

required special conditions. We further demonstrate the impact of delay, inhibi-

tions, and non-identicality of the layers on the collective dynamical behavior of

the chimera state in multiplex networks. We also provide a recipe to engineer the

chimera state. The findings obtained through our systematic investigation, demon-

strate the role of several crucial factors, which controls the emergence of chimera

state in the multiplex network, commonly found in real-world complex systems.
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Objectives

• To demonstrate the emergence of chimera state in networks incorporating the

multiplex architecture.

• To investigate the impact of several factors including delay, non-identical lay-

ers, and inhibition on the enhancement or suppression of chimera state in

multiplex networks.

• To provide a technique to gain control in designing of the chimera states for

both single- and multiplex networks.

Theoretical Framework

This thesis presents a comprehensive investigation of emerging chimera state in

multiplex networks. However, sketching on the full canvas, we aggregated several

studies in the thesis pertaining to the investigation of the collective dynamical be-

havior of complex systems, represented in terms of both single layer (monoplex)

and multiplex networks.

First, we describe the construction of the network and the governing equations that

we have used to showcase our findings. We have considered an undirected multi-

plex network (consisting of 2N nodes distributed in two layers) represented by the

adjacency matrix A(2N×2N) such that [87],

A =


A1 I

I A2


 (1)

Here, each layer of the multiplex network (consisting of N nodes) is encoded by ad-

jacency matrices A1, A2, respectively. The connectivity of the sth layer is described
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by (As; s = 1, 2). Each element of the layers is defined as

As
i,j =




1 if i is connected j

0 otherwise
(2)

The matrix As
(N×N) is a symmetric matrix (As

ij = As
ji), representing bi-directional

connections and with zero diagonal entries (As
ii = 0) depicting no self-connection.

I(N×N) is a unit matrix representing one to one connection between the mirror nodes

across layers of the multiplex network. We consider bi-directional inter-layer con-

nections which maintain symmetric coupling environment required for defining a

chimera state.

Furthermore, we represent the dynamical state of the nodes of the network at time

t by a real variable zti ∈ R, ∀i=1,...,2N . The local dynamics of the nodes is realized

as the famous logistic map zt+1
i = µzti(1 − zti) in chaotic regime (µ = 4.0) [26].

Adding the network architecture, the dynamical evolution equation for the whole

network can be written as [52]

zt+1
i = f(zti) +

ε

(ki)

2N�

j=1

Aij[f(z
t
j)− f(zti)] (3)

where ε represents the overall coupling strength (0 ≤ ε ≤ 1) and ki = (
�2N

j=1 Aij)

is the normalizing factor. The function f(zt) is the logistic map described above.

Primarily, the layers of the multiplex network are represented by the regular 1D

ring networks with periodic boundary conditions, where each node is connected to

its P neighbors on each side. Thus all the nodes in the regular 1D ring network pos-

sess same node degree �k� = 2P . Although, 1D ring network generally describes

a special class of regular networks, in the following, we will use regular or 1D ring

network interchangebly to describe 1D regular ring network throughout the thesis,

unless specified otherwise. We further describe the node degree by the coupling

radius r, defined as r = �k�
2N

= P
N

, with N being number of nodes in the regular

network in each layer of the multiplex network.

We further describe the equation governing the temporal evolution, incorporating
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the time delay τ as [53]

zt+1
i = f(zti) +

ε

(ki)

2N�

j=1

Aij[f(z
t−τ
j )− f(zti)] (4)

Note that, a constant delay value τ which is applied to all the edges in the network.

In case of heterogeneous delays, i.e. non-similar delays to the edges of the network,

we replace scalar constant τ with a matrix τ which elements τij describe the delay

between ith and jth node.

Chimera is defined as a hybrid dynamics consisting of a coherent and an incoherent

state. In the presented work, the dynamical state of a monoplex network or a par-

ticular layer of a multiplex network (represented by zti , ∀i=1,..,N , ∀t≥T0; T0 being the

transient time) is termed as coherent state [52] if

lim
N→∞

sup
i,j∈UN

ξ (x)

| zi(t)− zj(t) |→ 0 for ξ → 0 (5)

where UN
ξ (x) = {j : 0 ≤ j ≤ N, | j

N
− x |< ξ} represents the network neigh-

borhood of any point x ∈ S1, i.e., of the regular (S1; ring) network. Geometri-

cally, coherence means that in the continuum limit N → ∞, the spatial profile at

time t (i.e. the zti - i curve) of the state zti approach a smooth profile z(x, t). A

smooth spatial profile signifies very small spatial distance between the neighboring

nodes. The extreme case is the completely coherent state, which can be repre-

sented as zti = ztj∀t≥T0 ; ∀i,j (T0 being the transient time). The completely coherent

state (having a constant value for all nodes i.e. zero spatial distance with neigh-

bors) geometrically leads to a straight line spatial profile in the zti − i plane. Any

discontinuity appearing in the profile reflects the spatial incoherence and therefore

show co-existence of coherence-incoherent, leading to a chimera state. We have

used several measures throughout the thesis to detect the coexistence of coherence

and incoherence, i.e., the chimera state in the parameter space of the system under

investigation.
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Figure 1: Schematic diagram
of a multiplex network con-
sisting of two identical reg-
ular networks with left panel
(LP) and right panel (RP) de-
scribing undelayed and de-
layed systems, respectively.

Summary of the work done

Emergence of chimera in multiplex network.

We report an observation of the chimera state in the multiplex networks where an

individual layer is represented by a regular network (S1; ring) with non-local inter-

actions (Fig. 1; LP). We show that while multiplexing retains the multi-chimera state

displayed by the single-layer network in the same parameter regime, it changes the

spatial location of the region of the incoherence. We demonstrate identical chimera

patterns in the mirror layers of the multiplex network arising due to the underly-

ing symmetry of the network and chosen setup of initial conditions. Moreover,

the temporal behavior of the network remains periodic even after multiplexing. The

chimera in the multiplex network is found to be sensitive to the changes in the initial

conditions as well, which is revealed through the changes in the incoherent regions,

obtained through temporal evolution from different sets of initial conditions.

We, furthermore, include system-wide delayed interaction in both inter- and intra-

layer connection for a better representation of real-world dynamics on multiplex

networks (Fig. 1; RP). We find that an interplay of delay and multiplexing brings

about an enhanced or suppressed appearance of chimera state depending on the

distribution as well as parity of delay values in the layers. Additionally, we report a

layer chimera state with the existence of one layer displaying coherent and another

layer demonstrating incoherent dynamics. This study showcases the importance

of incorporating the multiple layers (representing different types of interactions)

in the context of chimera state, to gain insight into the real-world networks which

inherently possess such multi-layer architecture as well as delayed interactions.
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Figure 2: Schematic diagram depicting a multiplex network consisting of a regular
network and (a) a regular network with different node degree (i.e., with different
coupling range) and (b) a random network, respectively.

Promoting chimera through non-identical multiplexing.

We present the emergence of chimera state in a multiplex network consisting of

two non-identical layers, which are interconnected. Note that, chimera state is clas-

sically defined in a network with an identical coupling environment for all nodes.

Therefore, we define chimera state only in layers which are represented by regu-

lar networks (S1; ring), interchangeably called homogeneous networks (due to the

constant node degree). We demonstrate that the parameter range, displaying the

chimera state in the homogeneous layer of the multiplex networks, can be tuned

by changing the link density or connection architecture of the same nodes in the

other layer. We focus on the impact of the other layer (where we are modifying the

connection density or connection architecture) on the enlargement or shrinking of

the coupling regime for which chimera is displayed in the homogeneous layer. We

find that a denser homogeneous layer promotes chimera in a sparse homogeneous

layer (Fig. 2; a), where chimeras do not occur in isolation (i.e., in a single-layer

setup). Furthermore, while a high connection density is required for the second

layer if it is homogeneous, this is not true if the second layer is inhomogeneous. We

demonstrate that even a sparse inhomogeneous layer, can promote chimera states

in a sparse homogeneous layer (Fig. 2; b). Therefore, the connectivity of the mul-

tiplexed layer plays a crucial role in the appearance of the chimera state in other

layers.
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Enhancing chimera through inhibition.

Figure 3: Schematic diagram depicting a multiplex network consisting of two reg-
ular networks where the second layer is, (a) attractively coupled, (b) repulsively
coupled with some probability, (c) all repulsively coupled.

We have explored an impact of inhibitory (repulsive) coupling on the appearance of

chimera state in a multiplex network. We have systematically studied the impact of

multiplexing of a layer having repulsively coupled oscillators on the occurrence of

chimeras in the layer having attractively coupled identical oscillators.

We report that there exists an enhancement in the appearance of chimera state in

one layer of the multiplex network in the presence of all repulsive coupling in the

other layer (Fig. 3; c). Due to the multiplexing with a layer having all inhibitory

nodes thereby all repulsive coupling, global synchrony among oscillators with all

attractive couplings is destroyed, leading to a chimera state. Furthermore, we report

that the range of parameters for which chimera is demonstrated in one layer can be

controlled by changing the probability of inclusion of inhibitory nodes in another

layer. Importantly, we found that a minimal number of inhibitory nodes can bring

an enhancement in the appearance of the chimera state destroying the synchronized

state (Fig. 3; b).

Engineering Chimera states.

Chimera state consisting of coherent and incoherent regions, represents an exotic

hybrid state which is very difficult to harness due to its peculiar nature and strin-

gent conditions required for its appearance. However, due to the fundamental im-
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Figure 4: Schematic diagram of
the proposed engineering scheme
for designing the incoherent re-
gion (ICR) and, in turn, the
chimera state in single layer (top
panel; TP) and multiplex network
(bottom panel; BP).

portance as well as potential applicabilities, there have been persistent efforts to

control the appearance of the chimera state. Here, we present a novel technique to

engineer a chimera state by using an appropriate distribution of heterogeneous time

delays on the edges of a network. Using a coupled chaotic map with the identi-

cal coupling environment and starting from a coherent state, we demonstrate that

control over the spatial location of the incoherent region of a chimera state in a net-

work can be achieved by appropriately introducing time delays in sequence (Fig. 4).

This method allows engineering one-cluster (Fig. 4; TP,(a)) or multi-cluster (Fig. 4;

TP,(b)) chimera patterns.

Furthermore, we extend the proposed technique to provide a recipe to construct

chimera states in the multiplex networks with the aid of multiplexing-delays. The

chimera state in multiplex networks is produced by introducing heterogeneous de-

lays in a fraction of inter-layer links, referred to as multiplexing-delay, in a sequence

(Fig. 4; BP). Additionally, we demonstrate that the emergence of the incoherence in

the chimera state can be regulated by making appropriate choice of both inter- and

intra-layer coupling strengths, whereas the extent and the position of the incoher-

ence regime can be regulated by appropriate placing and strength of the multiplex-

ing delays. The proposed technique to construct such engineered chimera equips us

with multiplex network’s structural parameters as tools in gaining both qualitative-

and quantitative-control over the incoherent section of the chimera states and, in

turn, the chimera state.
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Conclusion

Through a series of investigations involving the study of dynamics on multiplex

networks, this thesis on one hand, demonstrates emergence of chimera state in mul-

tiplex networks and how interplay of system parameters like delay impede or expe-

dite the appearance of chimera state, while on the other hand present a recipe to pre-

cisely control the design of the chimera state. Additionally, revealing the impact of

one layer on the dynamical behavior of another layer of the multiplex network, this

thesis marks the importance of incorporating multiple layers of interaction while

investigating collection dynamics in real-world complex systems which inherently

possess such architecture.

Keywords : Network, Multiplex Network, Chimera State, Partial synchronization
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Chapter 1

Introduction

In Greek mythology, the chimera was a fire-breathing hybrid monster from Lycia in

Asia Minor, usually depicted with the body of a lion, and the head of a goat protrud-

ing from its back, and a tail with a snake’s head [1]. Since then, the word “chimera”

has come to refer anything comprising of disparate parts. Chimera is introduced to

the study of dynamics on coupled non-linear systems through a symmetry-breaking

Spatio-temporal phenomenon, comprising of different groups of constituent ele-

ments of the underlying system, exhibiting distinctly disparate dynamics [2, 3].

The mechanisms for the appearance of chimera in a multi-layered coupled systems

and exploration of different system parameters controlling its emergence and design

form the core of the work presented in the thesis.

The study of dynamical systems on interacting entities, represented as networks de-

scribe the foundation of the present work. The concept of the dynamical systems

theory has its roots in Newtonian Mechanics where Newton and Leibniz developed

the calculus to describe the motion and trajectories of celestial bodies through cou-

pled differential equations [4]. Furthermore, the coupling architecture describing

the interaction among basic entities initiated the field of Network Science. The
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CHAPTER 1.

concept of networks describing the interaction patterns originated from the famous

work on Seven Bridges of Königsberg by Leonhard Euler in 1735 [6]. His depiction

of the constituent entities as vertices (nodes) and interactions as edges (links) lay

the foundations of Graph Theory [7]. Owing to the nearly exponential growth of the

computational power and availability of the colossal amount of information to the

masses in the late twentieth century, the graph theory evolved into modern network

science penetrating entire spectrum of science and technology [8]. The present-day

aim of the study of dynamics on networks is in providing insight into the qualita-

tive and quantitative behavior of a complex system ranging from as small as cells

in our body to as big as celestial bodies in the galaxy, framed through a combined

mathematical framework of coupled differential equations [9, 10].

Among diverse aspects of dynamics on networks, the study of synchronization nar-

rates one of the great success stories of network science and dynamical systems

theory [11]. The term “Synchronization” refers to the coordination of multiple

events to operate a system in unison. In 1665, Christiaan Huygens first reported

the tendency of two pendulums, mounted to a common wall, to exhibit synchro-

nized motion [12, 13]. Later on, Famous Works by Wiener [14], Winfree [15],

Kuramoto [16] and crawford [17] laid the foundations of the Synchronization the-

ory. In 1990s Steven Strogatz presented a general approach to understanding the

coupled dynamical systems and popularized the synchronization phenomenon, at-

tracting a tremendous amount of work done in the field in subsequent years [18].

Presently synchronization is known as one of the cornerstones of network science

successfully providing insight into a diverse range of subjects ranging from Physics

to Biology to Social Science and many more [19].

Furthermore, at the dawn of 21st century, a massive outburst in technological ad-

vancements in all the fields of science bough a massive influx of data pertaining to

various natural and artificial complex systems, providing new insights and present-

ing new challenges to the existing theoretical frameworks. The emergence of partial

synchronization patterns of chimera state, which is found to be more frequent in nat-

ural systems [20], is one of such directions that recently added a new dimension to
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CHAPTER 1. 1.1. DYNAMICAL SYSTEMS

the study of coupled dynamics on the Networks. The thesis aims at providing new

insights into the emergence of chimera state utilizing a new multi-layered approach

to network science.

In the following, we present a brief sketch of the dynamical systems theory fol-

lowed by an account of key concepts of the networks science. Next, combining

both dynamical systems and networks, we show the mathematical framework for

the collective dynamics on networks and synchronization. Next, we add a brief

background on the research pertaining to chimera state and multiplex networks. In

the final section, we discuss the motivation behind this thesis and append a reader’s

guide to the thesis for ease of reading.

1.1 Dynamical systems

The theory to describe dynamics of a system is at heart, a collection of differen-

tial equations that governs the temporal evolution (or dynamics) of the state of the

system of interest [4, 5, 21, 22]. State Variables describe a set of dynamically

changing quantities that are required to completely describe the system under con-

sideration (for example, position and velocities of a particle). System’s Parameters

are the quantities that remain constant when the state variables evolve dynamically

(for example, mass or charge of a particle). A set of differential equation presents

how the state variables change in time as a function of the current state and the sys-

tems parameters (for example, Newton’s second law of motion). If n state variables

are required to describe a system of interest, then the state of the system can be

denoted by a vector Zn×1 ∈ Rn. Considering time t as a continuous variable and

the system’s parameter as µ, a set of n first-order differential equations describing

the temporal evolution of the state or more precisely, the dynamics of the system

can be written symbolically as

dZ

dt
= F(Z, µ, t) (1.1)
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Where the function F depict the evolution of different variables. In some cases,

time t can be treated as a discrete variable, and in such situations, the dynamics of

the system can be described as difference equations or maps, expressed as

Zt+1 = F(Zt, µ, t), t ∈ Z (1.2)

Note that, the function F : Rn �→ Rn is a vector function of the state variables

Z = (z1, z2, ..., zn)
T with suitable intrinsic time dependence. Given an initial state,

the differential equation (or map in time-discrete case) can calculate the state of the

system at any point of time depending on the nature of the function F [23]. In case

of a deterministic system, the function F can be written explicitly, and a fixed initial

condition will always lead to the same output state at a given time point. In case

of a chaotic system, the function F is deterministic, but a slight perturbation in the

initial state will diverge exponentially leading to random appearing output state in

large time scales. A stochastic function F have build-in randomness and will always

produce random output states given an initial state. In this thesis, we primarily have

used the time-discrete logistic map in the chaotic regime to study the dynamics of

the underlying system [24].

1.1.1 Logistic Map

In 1976, Sir Robert May presented a simplistic mathematical model to describe

the growth of biological population, which can be depicted as a time-discrete map

written as following [25]

zt+1 = f(zt, µ) zt ∈ R

= µzt(1− zt)
(1.3)

where the state variable zt denotes a population at time t, and zt+1 the same one year

later. µ represents the system’s parameter (also known as bifurcation parameter)

denoting the rate of growth. This model is known as the non-linear logistic differ-

ence equation or logistic map, which is very simple yet demonstrate very complex
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Global Non-Local Local

Figure 1.1: Schematic diagram depicting different types of coupling on a network.
The left panel (LP) shows a network with all to all global couping. The mid panel
(MP) demonstrates a non-local coupling and the right panel (RP) describes the local
coupling architecture.

dynamical phenomena. Here the state variable z or the population is treated as a

fraction of maximum population between zero and one representing, extinction and

the maximum population, respectively (z ∈ (0, 1)). The logistic map shows chaotic

behavior for a particular range of the parameter µ [26], which is used throughout

the thesis.

1.2 Networks

In the previous section, the dynamics of a system is narrated in terms of a set of un-

coupled differential equations, depicting the time evolution of the state variables of

the system. However, natural systems rarely evolve in an isolated fashion. The con-

stituent entities of the system often interact with each other, demonstrating a collec-

tive output which may be quite dissimilar to the output state resulted from temporal

evolution of isolated entities. Therein lays the core concept of networks which de-

scribe the constituent entities as vertices (nodes) and the interactions among them

as edges (links). Thus, a network is a collection of vertices and edges, collectively

showcasing the entire coupling architecture of the system. Mathematically networks

are described in terms of graphs [8]. A graph (or network) is depicted by an ordered

pair of sets G = (V,E), where V = {v1, v2, ..., vN} and E = {e1, e2, ..., eM} repre-
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sent the sets of vertices and edges, where N and M denote the size of the sets V and

E, respectively. The graph (or network) G posses N number of vertices, connected

by M number of edges. The network also can be presented in terms of an adjacency

matrix (A), corresponding to the graph G such that the elements of the matrix are de-

fined as aij = 1 if ith and jth nodes are connected and aij = 0, otherwise. Note that,

We have considered simple (no self-loop and no multiple edges between the same

pair of nodes), connected (no set of nodes exist which are disconnected from the

rest of the network) and undirected (all the edges in the network are bi-directional)

network in the thesis unless specified otherwise.

Here, we furthermore describe some key terms related to the networks that have

been used throughout the thesis.

• Node Degree. Degree of a node is defined as the number of edges which

are incident on that particular node. Mathematically, degree of a node, i, is

denoted by ki =
�N

j=1 aij . Furthermore, the average degree of a network

(�k� = 1
N

�N
i=1 ki) is defined as the average of all degrees of the nodes in the

network. Additionally, a degree distribution (P (k)) denotes the probability

distribution of all degrees of the nodes in the network. The degree distribution

curve P (k), in turn, describe the probability that a randomly selected node

will have a degree k.

• Global and Local Coupling. Global coupling (Fig. 1.1 LP) refers to a case

where all the nodes are connected with all other nodes of the network for-

mulating an all to all coupling architecture. Therefore, global coupling will

have a node degree of N − 1 (ignoring the self-connection) for a network

consisting of N nodes (Degree 5 for N = 6 in Fig. 1.1, LP). In comparison,

a purely local coupling (Fig. 1.1, RP) refers to a situation when all nodes

possess connections only with their nearest neighbors.

• Non-Local Coupling. In general, non-local coupling (Fig. 1.1, MP) refers

to an intermediate stage between global or purely local coupling architecture

where the nodes are connected to some of the other nodes of the network.
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Most of the natural system possess such kind of connection architecture. The

chimera state had initially been demonstrated for a non-locally coupled net-

work [2, 3].

• Delayed coupling. Due to the finite speed of information transmission, de-

lay naturally arises between the transmission ends (nodes) connected through

links (edges). Therefore, a delayed system possessing delayed edges portray

a more realistic model of the natural systems. The time-delayed coupling

(incorporating time delay τ ) can be generally written as Ż = F(Zt,Zt−τ , µ)

[27] and discussed in details in the subsequent chapters of the thesis.

Now, depending on the connectivity patterns, a network can have different types

of connection architectures [8–10], among which we describe two in the following,

which is relevant to our work presented in the thesis.

1.2.1 Regular Network

A Regular network posses a special type of connection architecture where all the

nodes have same node degree (�k� = ki, ∀i = k) (Fig. 1.2, LP). A regular network

of N nodes can have a global coupling with all nodes having node degree k = N−1

(without self-loop) (Fig. 1.1, LP) or a purely local coupling with all nodes having

node degree k = 2 (Fig. 1.1, RP). A non-locally coupled regular network can have

nodes with only even node degrees between 2 < k < N−1. Therefore, considering

k = 2P node degree for all the nodes in a regular network, where P denotes the

number of neighbors on each direction (clockwise or anti-clockwise), P will have

a range of 1 < P < (N − 1)/2 for a non-locally coupled regular network. For ease

of depiction, we further denote the node degree of a regular network by coupling

radius r defined as r = k/2N = P/N . Due to the symmetry of the regular network,

it also referred to as S1 or ring network [2, 3] and used so, in the subsequent chapters

of the thesis.
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1.2.2 Random and Scale-Free networks

Unlike the regular network with same degrees for all nodes, a random network

(Fig. 1.2, MP) possess a random connection architecture where all the edges are

drawn with a particular probability. Starting with a set of isolated nodes, a random

network is formed by adding edges between the nodes with a probability p. In the

thesis, we use the famous “Erdős - Rényi” (ER) random network [28] which con-

siders equal probability p for all introduced edges, resulting in a Poisson’s degree

distribution. An ER random network is constructed by considering with isolated set

of N nodes and then by connecting every pair of nodes with probability p. It creates

a network with approximately M = pN(N−1)
2

edges distributed randomly among

the nodes of the network. A Scale-Free network(Fig. 1.2, RP) is referred to as a

network with a power-law degree distribution, characterized by a large number of

low degree nodes and a small number of high degree nodes. The famous Barabási

- Albert model [29] describes the characteristic power-law degree distribution as

P (k) = k−λ where the exponent λ typically lies in the range 2 < λ < 3. These

networks are constructed by considering a small number of connected nodes and

adding a new node with a constant number of edges to be connected to the existing

nodes. The incoming node connects with other nodes according to the preferential

attachment model, which describe that the nodes having a higher degree will have

a higher probability to connect to the incoming nodes. The Scale Free nature has

been found in a diverse range of real-world networks, making it one of the most

successful models in network science.

1.3 Dynamics on Networks

The dynamics of a system describes the temporal evolution of the elements of a

system, whereas, a network describes the interaction patterns among the elements

of the system. Combining both the aspects of the network architecture and the gov-

erning equation for local temporal evolution, the collective dynamics of the whole
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Regular Scale FreeRandom

Figure 1.2: Schematic diagram depicting a Regular network in left panel (LP); a
Random network in mid panel (MP); and a Scale-Free network in right panel (RP).

network can mathematically be represented as [30]

zt+1
i = f(zti , µ) + ε

�

j

AijH(ztj, µ) (1.4)

where f denotes the contribution from local temporal evolution of individual node,

i and H depicts the influences from its neighbors, coupled through the adjacency

matrix A, representing the coupling architecture of the network. ε showcase the

coupling strength of the connections among the nodes. This general framework is

used throughout the thesis to present the study of the dynamics on networks.

1.4 Synchronization

Synchronization refers to an emergent phenomenon where coupled entities adjust

their dynamical behavior in such a way that they collectively exhibit common dy-

namics [11, 19]. The generalized synchronization corresponds to a case where the

state variables associated with the elements possess a functional correlation among

them i.e. when a function Ψ can be defined such that zti = Ψ(ztj); ∀t≥0, ∀i,j∈N .

Depending on the system’s parameters, complete synchronization can also be ob-

served for coupled systems where all the state variables have identical values, i.e.,

the case where Ψ(ztj) = ztj . Moreover, coupled dynamical systems can also exhibit

Phase synchronization, lag synchronization, cluster synchronization, and more im-
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portantly, partial synchronization, which is the focus of this thesis [19, 30].

1.5 Chimera State

A dynamical system comprising of identically coupled elements is naturally ex-

pected to make the transition from an asynchronous state to a synchronous state,

depending on the system’s parameters. One would expect such a system to exhibit

complete synchronization for a suitable choice of system’s parameters as all the

elements experience uniform coupling environment. In 2002, Kuramoto & Bat-

togtokh reported a peculiar state with co-existing asynchronous and synchronous

domain in a network of identical elements under some special conditions [2]. In

2004, Abrams & Strogatz christened this state as a chimera and provided a firm

understanding over its emergence [3]. The discovery of this intriguing dynamical

state has recently attracted considerable attention due to both its fundamental sig-

nificance as well as its new-found applicabilities to the different fields [5, 31, 32]

including neuroscience [20, 33].

Initially, the investigation pertaining to the chimera state is primarily restricted to the

phase oscillators [2, 3] arranged on a regular network with identical coupling archi-

tecture but later they had been reported for a variety of different systems including

non-identical networks [34], time-varying networks [35], 2D and 3D lattices [36–

40], bi-partite networks [41], modular networks [42], inhibitory networks [43] and

many others. It has been reported using various dynamical models including neu-

ral [20, 33], planar [44], Stuart-landau [48, 49], Van der Pol [50], chaotic oscil-

lators [51], and for the time-discrete maps [52–54] as well. It has recently been

extended to quantum oscillators [55, 56]. Although chimeras was initially reported

for non-local, non-global coupling [2, 3], it have also been demonstrated for purely

local[57] as well as globally [49, 58] coupled networks.

Various types of chimeras have been reported in the literature, including multi-

cluster [59, 60], breathing chimeras [62], delayed-feedback chimeras [61] and glob-

ally clustered chimera [64]. There have been persistent efforts to gain a more in-
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depth insight into analyzing and controlling [65–67] chimera states which also been

realized recently through application of heterogenous delays [68, 69]. Experimen-

tally, chimeras have been demonstrated for optical [70], chemical [45, 46], mechan-

ical [47], electronic [71] and electro-chemical oscillators [72, 73], superconducting

metamaterials [74, 75].

Furthermore, the chimera state has been closely related to various biological pro-

cesses ranging from uni-hemispheric sleep in mammals [31, 76, 77] to cognitive

process [20] in human brain networks. Hybrid dynamics of chimera state also has

been reported to emerge in neural networks of two well-studied, Cat [79] and C

Elegans [78] Brain networks. Studies on the synchronization in epileptic seizures

indicated a huge collapse of synchronization just before high coherence event of

the seizure [80]. Recently, observation of chimeric patterns has been reported at the

onset of the transition to a seizure state in epilepsy [81, 82]. All the investigations

indicate that chimera state with its co-existing synchronous and asynchronous activ-

ities play a significant role in neural dynamics [38, 40] and present a great candidate

to develop understanding in neural systems [83]. Moreover, the chimera-like state

has also been reported in other biological systems like neural “bump” states [84],

the cardiac rhythms in ventricular fibrillation [85] as well as social systems [86].

The chimera state provides a powerful tool to study the dynamical path from asyn-

chrony to complete synchrony and has amassed considerable works literature owing

to its exotic nature and its appearance in various natural systems. We devote this

thesis to the study of the chimera state and add a new dimension to the field by

investigating its appearance in multi-layer complex systems.

1.6 Multiplex and Multilayer Networks

The theory of network science has been tremendously successful in describing the

intricate interaction patterns among the constituent entities of a complex system.

However, the interactions among the constituents are primarily considered to be of

the same type until now, which is not right for most of the cases of real-world net-
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Figure 1.3: Schematic diagram
of a two-layer multiplex network
consisting of two random net-
works. The connection among
the nodes in a particular layer is
represented by the solid lines and
referred to as intra-layer edges.
The connections among the mir-
ror nodes in different layers is
depicted by dashed lines and
termed as inter-layer edges.

works. For example, two geographical regions may be connected through Air or

Train or Buses depending on their distance or two people may have different types

of relations (academic or friendship or business-related) between them. A single

layer network representation of these systems (transport and social, respectively)

provide an incomplete model to understand the underlying dynamics of these sys-

tems. Recent advancements in data accusations for real-world systems, made it

possible to incorporate multiple types of interactions, leading to the incorporation

of the multiplex network framework [87].

The multiplex approach to network science which incorporates the existence of var-

ious types of interactions (edges) between the same pair of entities (nodes) by cate-

gorizing them in different layers with each layer reflecting a specific type of inter-

action, provide a more realistic portrayal of real-world complex systems [88–91].

As in the case of previous examples, the transportation network may be considered

as a multiplex network where each layer depict a particular mode of transportation

or the social network where each layer may represent a particular type (academic or

friendship or business) of the relationship among the people [87].

Mathematically, the adjacency matrix representation of a multiplex network (A)

consisting of m layers can be expressed as [54, 87]
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A =




A1 I . . . I

I A2 I . . I

. I A3 . . .

. . . . . .

. . . . . .

I . . . . Am




, (1.5)

Where the layers are encoded by a set of adjacency matrices {A1, A2, ..., Am}. The

unit matrices I denote one to one connection between the mirror nodes across layers

of the multiplex network. This particular setup is termed as the multiplex network

where both the layers possess same number of nodes and all the mirror nodes are

connected across different layers. A general form of the multiplex networks is re-

ferred to as multi-layer network where different layers might possess different num-

ber of nodes leading to one to many connections across layers [87, 92]. However,

we have considered a simple multiplex network in subsequent chapters to showcase

the thesis works.

The inclusion of multiplex framework presents a wide variety of novel dynamical

phenomena, which is impossible to emerge in single-layer networks [34, 53], which

lead to the investigations that are presented in this thesis.

1.7 Plan for the thesis

This thesis embraces the multi-layer approach to network science and explores the

coupled dynamics on multiplex networks. The main focus of the thesis is to investi-

gate the emergence of chimera state in multiplex networks and study the enhanced

or suppressed appearance of chimera state under different factors which play a cru-

cial role in its emergence. The thesis is divided into five chapters other than the

introduction.

Chapter 2 reports the emergence of the chimera state in the multiplex networks

consisting of two identical regular networks and presented the required conditions
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for its emergence. It furthermore provides a treatise on the behavior of chimera

state in a multiplex network under homogeneous delay coupled dynamics. A con-

stant system-wide delay is considered in intra- and inter-layer edges of the multi-

plex network and the enhanced or suppressed appearance chimera state is demon-

strated under different values and parity of the delay values. A complete table is

presented considering all combinations of inter and intra-layers delays with corre-

sponding critical coupling strengths (coupling strength required for the transition

from chimera to coherent state). Furthermore, a layer-chimera state is also show-

cased, which is unique to the multiplex networks.

Chapter 3 is devoted to finding the parameter regime for which chimera appears

in a multiplex network where the layers of the multiplex network are not identi-

cal. Specifically, two cases are considered where (I) two-layer posses a mismatch

in connection densities keeping the regular network architecture same in both the

layers and (II), two layers have a connection architecture mismatch, i.e., one layer

has a regular and other layer has a non-regular connection architecture. We pre-

sented a systematic study of the entire parameter space and shown and enhanced

the appearance of chimera state arising due to the non-identical multiplexing.

Chapter 4 describes the appearance of chimera state a layer of the multiplex network

in the presence of inhibitory or repulsive coupling in another layer. The investiga-

tion presents the destruction of synchronized regime and arises of chimera state due

to the presence of inhibition, even in a small amount in the multiplexed layer.

Chapter 5 puts forward a technique to engineer chimera state in both single-layer

and multiplex networks by heterogeneous delays, suitably placed in sequence in

intra- and inter-layer edges, respectively. The technique is shown to exert complete

control over the position and the extent of the incoherent region and thus, in turn,

the chimera state. Additionally, inter- and intra-layer coupling strengths are demon-

strated to have complete regulatory control over the emergence of the incoherence

regions of the chimera state in the multiplex network case.

Finally, Chapter 6 summarizes of the works included in the thesis and discuss the

possible scopes of future research as an extension of the studies discussed here.
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So briefly, the chapters of the thesis are as follows:

• Chapter 2: Demonstration of the emergence of chimera states in multiplex

networks and description of the impact of delay on chimera state in the mul-

tiplex network.

• Chapter 3: Investigation on the enhanced appearance of chimera state in a

multiplex network consisting of non-identical layers.

• Chapter 4: Study on the impact of inhibition on the appearance of chimera

state in multiplex networks.

• Chapter 5: Presentation of a novel recipe to engineer chimera state in single

layer and multiplex network with the aid of heterogeneous delays in sequen-

tial intra- and inter-layer edges, respectively.

• Chapter 6: Summary of the thesis and discussion on the future scope of the

thesis research.
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Chapter 2

Emergence of chimera in multiplex net-
work

2.1 Overview

This study demonstrates the emergence of the chimera state in a multiplex network

and presents the role of inter- and intra-layer delay on the enhanced or suppressed

appearance of chimera state. Complex systems, found in the world around us, of-

ten exhibit novel emergent phenomena which are impossible to decipher without a

wholistic multi-layer approach [87]. In Chapter 1, we have described the impor-

tance of incorporation of multi-layer network framework while investigating cou-

pled dynamics on networks. Adding to that, in this chapter, we explore the impact

of delayed interaction among nodes of the network on the collective dynamical be-

havior, especially on the emergence of a chimera state. Due to the finite speed

of information transmission, delay naturally arises between the transmission ends

(nodes) connected through channels (edges) in complex systems. An analysis of

the impact of time delay on dynamical properties of a coupled system is therefore

very crucial to predict and explain the dynamic evolution of such systems [27].
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Numerous dynamical phenomena, including enhancement or suppression of syn-

chronization, have been found for time-delayed networks [93, 94]. Although it has

been recently shown that chimera states exist in time-delayed networks [41, 61, 64],

the occurrence of this complex spatio-temporal pattern is yet not well understood in

the presence of time delay in multiplex networks.

In this chapter, we first demonstrate the emergence of the chimera state in multiplex

networks. We show that while multiplexing two layers do not change the type of

the chimera state and retain the multi-chimera state displayed by the single-layer

networks, it changes the regions of the incoherence. Furthermore, we show the role

of the interplay of the delay and the multiplexing on the occurrence of a chimera

state. We find that small delays lead to enhancement or suppression in the range of

parameters for which chimera state appears, depending upon the parity of the delay

value, and large delays always lead to the suppression in the range of parameters

for which the chimera state appears. The parity of delay value denotes the odd/even

nature of the numerical value assigned as delay, which plays an important role in the

enhancement and the suppression of range of the parameters, displaying chimera

state. In multiplex networks, this enhancement or suppression depends upon the

distribution of delay in the individual layers, which further results in a new type

of chimera state, henceforth called as layer chimera state. The layer chimera state

exhibit the existence of one layer showing coherent and another layer demonstrating

incoherent dynamical evolution, which is unique to the delayed multiplex systems.

Therefore, this chapter encompasses the emergence of the chimera state and its

dependence on the delay on the multiplex network.

2.2 Theoretical Framework
2.2.1 Dynamics on Networks

We again describe the governing equations for investigating dynamics on the net-

works in context of multiplex networks having both delayed and undelayed edges.

To showcase our findings, we consider a multiplex network (A) of 2N nodes where

each layer is represented by a regular network (S1; ring) consisting of N nodes
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(Fig. 4.1). The dynamical state of the nodes of the network at time t can be rep-

resented by a real variable zti ∈ R, ∀i = 1, ..., 2N . The local dynamics of the

nodes is realized as the famous logistic map zt+1
i = zti(1 − zti) in chaotic regime

(µ = 4.0) [26]. This simple model, which has the ability to display complex chaotic

behavior, have been widely investigated to understand various complex phenomena

manifested by a diverse range of real-world systems [19, 95]. Adding the network

architecture, the dynamical evolution equation for the whole network can be written

as [53, 54]

zt+1
i = f(zti) +

ε

(ki)

2N�

j=1

Aij[f(z
t
j − f(zti)] (2.1)

Where ε represents the overall coupling strength (0 ≤ ε ≤ 1) and ki = (
�2N

j=1 Aij)

is the normalizing factor. The function f(zt) is the logistic map described above.

The regular networks considered in the individual layers possess the coupling radius

r = 0.32, where r represents the coupling radius defined by r = P
N

, with P signify-

ing the number of neighbors in each direction in a layer. Therefore, the node degree

of the regular network considered in the individual layers is 2P = 2rN = 64.

The adjacency matrix (A) of the multiplex network with two layers (encoded by

a set of adjacency matrices {A1, A2}) can be expressed as [54]

A =


A1 I

I A2


 , (2.2)

The adjacency matrix of the sth layer is described by (As, s = 1, 2) where each

element is defined as As
ij = 1(0) depending upon whether ith and jth nodes are

connected (or not) in the sth layer. The matrix As is a symmetric matrix with di-

agonal entries As
ii = 0 depicting no self-connection. I is a unit N × N matrix

representing one to one connection between the mirror nodes across layers of the

multiplex network. We consider bi-directional inter-layer connections which main-

tain symmetric coupling environment required for defining a chimera state. We

further describe the equation governing the temporal evolution, incorporating the

time delay τ as [53]

zt+1
i = f(zti) +

ε

(ki)

N�

j=1

Aij[f(z
t−τ
j − f(zti)] (2.3)
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Figure 2.1: Schematic di-
agram of a multiplex net-
work consisting of two iden-
tical regular networks. The
left and right panel describes
undelayed and delayed sys-
tems, respectively. τl1(τl2)
signifies delay in intra-layer
connections (represented as
solid lines) and τ12 depicts
delay in the inter layer con-
nections of the multiplex net-
work (represented as dashed
lines).

Note that, we have considered a constant delay value τ which is applied to all the

edges in the network. Further, we have denoted τl1 and τl2 as the intra-layer delays

for first and second layer, respectively. τ12 is used for delay, applied to all inter-

layer edges. Fig.2.1 present a schematic description of the arrangement for ease of

reading.

2.2.2 Chimera State

Chimera is defined as a hybrid dynamics consisting of a coherent and incoherent

sate. The dynamical state of the network (represented by zti , ∀i=1,..,N , ∀t≥T0; T0

being the transient time) is defined as coherent [34, 52] if

lim
N→∞

sup
i,j∈UN

ξ (x)

| zti − ztj |→ 0 for ξ → 0 (2.4)

where UN
ξ (x) = {j : 0 ≤ j ≤ N, | j

N
− x |< ξ} represents the network neigh-

borhood of any point x ∈ S1, i.e., of the regular (S1; ring) network. Now due to

a near zero spatial distance between neighboring nodes, the coherent state can be

geometrically represented as a smooth curve in the spatial plot where amplitudes

of all the nodes are plotted as a function of node indices for a particular time value

(i.e., in zt − i plane) [34, 52]. In the continuum limit N → ∞, the snapshots of

the state zti (in zt − i plane) approach a smooth profile z(x, t). Additionally, a com-

pletely synchronized state, which can be represented as zti = ztj∀t≥t0∀i,j , leads to a
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straight line in the spatial profile (i.e. in the zt − i plane. This straight line repre-

sents a completely synchronized state (zti = ztj∀i, j). Any discontinuity appearing

in the profile reflects the spatial incoherence and therefore show co-existence of

coherence-incoherent, leading to the chimera state.

2.2.3 Identification of chimera state

We quantify this absence of smoothness (i.e. the presence of chimera state) by a

spatial distance based measure which can be described as [53]

dti = |(zti+1 − zti)− (zti − zti−1)| (2.5)

Since, the chimera state is represented by a co-existence of the coherent-incoherent

dynamical evolution of the nodes, the spatial plot consisting of a smooth part (con-

tinuous curve representing coherent nodes) and gaps (discontinuities representing

incoherent nodes ) reflect an existence of the chimera state.

This measure capturing the diffe0rence of the spatial distance between the neigh-

boring nodes, attains a value towards zero for a coherent profile. Any discontinuity

in the spatial curve is indicated by a kink in di-i plane [54]. Furthermore, We use

the the number of spatial clusters, based on a collection of nodes with coherent evo-

lution (recognized by low values of di) to identify the appearance of the chimera

states. These spatial clusters are counted through the identification of spatially

neighboring nodes having distance measure di < δ, where δ is a small quantity.

We choose a small positive threshold value δ (δ ≈ 0.0384) to clearly distinguish

different dynamical states [96]. We discard clusters with the node population below

a certain threshold, for instance 5, as considered in few other works [96]. The num-

ber of spatial clusters identifying different types of dynamical states can be written

as follows; Nclus = 0 for the spatially incoherent state, Nclus = 1 for spatially

coherent or completely synchronized state and Nclus > 1 for the chimera state.

2.2.4 Initial conditions

The chimera state has been reported to be sensitive to the choice of initial condi-

tions. A proper choice of the initial condition is required for the emergence of the
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chimera state [97]. For example, a special hump-back function is used to generate

initial condition for demonstration of chimera state in identical non-locally coupled

Kuramoto oscillators [2, 3]. However, few recent works have suggested that the

choice of initial condition for occurrence of the chimera state may not be so signif-

icant. For instance, Ref. [48, 61] has shown the chimera-like behavior with a set

of random initial conditions. Ref. [46] utilized a quasi-random initial condition for

the realization of the chimera state in a coupled photosensitive chemical oscillators.

Here, we consider a uniform random distribution of initial states (zt=0
i ) for the ith

oscillator which is bound between an interval [0, exp
�
− (i−N

2
)2

2σ2

�
) where the variance

σ is chosen depending on the size of the network such that zt=0
i ∈ [0, 1]. We use the

same set of initial conditions for both the layers in a multiplex network and find that

despite choosing a quasi-random initial condition, introduction of delay in a layer

leads to an enhanced or a suppressed critical coupling strength for coherent evolu-

tion of dynamical variable in that layer, depending upon distribution and parity of

delay values in different layers.

2.3 Results
2.3.1 Chimera in undelayed multiplex networks

We evolve Eq. 2.1 starting with a set of special initial conditions and after an ini-

tial transient, study the spatio temporal patterns of the multiplex network. In the

absence of any coupling between the nodes (ε = 0) or for weak couplings, all the

nodes evolve independently, and no spatial coherence is observed. For instance,

as demonstrated in Fig. 2.2(a), for ε = 0.1, the evolution of the nodes in the mul-

tiplex network yields an incoherent state with no correlations in the neighboring

nodes. As the coupling strength is increased, a partially coherent state emerges at

ε = 0.28 with correlated spatial values of the neighboring nodes in the end and in

the middle regions of each layer, however, the spatial range of the incoherent region

is more than the coherent region (Fig. 2.2(b)). This coexistence of the coherent and

incoherent dynamics corresponds to the chimera state in the multiplex network.

The dynamical behavior of two layers of a multiplex network is a replica of
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Figure 2.2: Snapshots and
spatio-temporal plots for
multiplex network consisting
of regular (S1; ring) network
layers. Coupling strength(ε)
for the plots are as follows,
(a,f) are for ε = 0.1; (b,g)
are for ε = 0.28; (c,h)are
for ε = 0.30, (d,i) are
for ε = 0.40, (e,j) are for
ε = 0.44. Number of nodes
in each layer is N = 100 and
coupling radius r = 0.32.
Initial transient is taken as
5000 time units. The sptio-
temporal plots are presented
for time units in range 5000
to 5015.

each other manifesting exactly the same spatio-temporal patterns (Fig. 2.2). The

exact same behavior is observed for multiplex networks having more than two lay-

ers (Fig.2.3). This is, however, can be easily explained. We have considered the

same realization of the quasi-random initial condition for the different layers of the

multiplex network. Now, due to mirror node inter-layer coupling of the multiplex

network, the inter-layer contribution of Eq. 2.1 cancels out. This reduces Eq. 2.1

to the governing equation for a single layer, consisting of the local contribution

of the node dynamics and the intra-layer coupling contribution of its neighbors.

Moreover, It has been shown that a different realization of the initial condition for

different layers of the multiplex network leads to different chimera patterns in the

multiplexed layers [54]. However, it should be noted that while different realiza-

tions in different layers induce different chimeric patterns across layers, it does not

affect the overall parameter range for which chimera appears in the multiplex net-

work. At the same coupling value, the spatio-temporal dynamics (Fig. 2.2 (g))

reflects non-regular skeletal type pattern in the incoherent regions. This irregularity

of the pattern suggests that, in the multiplex network framework, a node may get
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Figure 2.3: Snapshots for (a) Three layer and (b) Four layer multiplex network
where the layers are represented by identical regular networks. Parameters are ε =
0.28 and r = 0.32. Number of nodes is N = 100 for each layer.

attracted to either of the upper or lower regions depending on its initial value as

reported for the single-layer network [52].

As we increase the coupling strength further, the range of the incoherent region

decreases as depicted by Fig. 2.2(c) for ε = 0.3. At ε = 0.4, we observe a sharp

discontinuity in the otherwise smooth profile of z(j) and the incoherency appears

at two distinct points in each layer. This is a bifurcation point for the coherent-

incoherent transition. Above this coupling value, all the nodes in the multiplex

network acquire the complete, coherent state as indicated by the appearance of a

smooth geometric profile at ε = 0.44 (Fig. 2.2(e)). Fig.2.2 depicts spatial regions

of incoherent nodes and thus indicates a non-zero spatial entropy with the periodic
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Figure 2.4: Spatial entropy as a function of coupling strength (ε). Other parameters
are the same as Fig. 2.2.
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network layers. Coupling strength (ε) for presented states are (a,c) with ε = 0.44
and (b,d) with ε = 0.4. Other parameters are same as Fig. 2.2.

temporal dynamics, representing a Type II chimera state [98]. Further, the regions

of incoherence in the spatial profile continues to exist for narrower intervals with

an increase in the coupling strength (Fig. 2.2). Furthermore, in the Chimera state,

the time evolution of all the nodes in the network depicts periodic behavior with

the periodicity two depicting temporal regularity. The coupled dynamics displays

the spatial chaos which is defined by the non-zero spatial entropy given by h = d

loge(2), where d represents fraction of the incoherent nodes in network [52, 99].

We show that the distance measure (Eq. 2.5) is able to distinguish between coherent

and chimera state easily. The discontinuous spatial profile (Fig. 2.5(b)) at ε = 0.4

gives rise to the kinks (Fig. 2.5(d)) in the distance measure distribution signifying

transition to the chimera state. We calculate the spatial entropy as a function of the

coupling strength (ε) in order to demonstrate the transition between the chimera to

the coherent state. A transition from the chimera to a coherent state is indicated by

the discontinuous change in spatial entropy of the network (Fig.2.4).

2.3.2 chimera in delayed single-layer network

First, we discuss the impact of delay on the dynamics of a single layer regular (S1;

ring) network. For the undelayed evolution, the single layer regular network ex-

hibits a transition from the incoherent to the coherent state via chimera as coupling

strength (ε) is increased. This can be clearly depicted from Fig. 2.6, where a transi-
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tion from incoherence to the chimera to the coherent state at τ = 0 (bottom row) can

be seen, in terms of the Nclus employed to distinguish between different dynamical

states.

However, an interesting phenomenon is discerned for the mid-range coupling val-

ues when the delay is introduced in the single-layer regular network. The overall

dynamical behavior, as a function of coupling strength, remains the same as for the

delayed evolution (Fig. 2.6). For the weak coupling strength, the delayed evolution

also leads to the incoherent dynamics as found for the undelayed case. For mid-

range coupling values, chimera dynamics is observed, but the transition from the

chimera to the coherent state becomes highly dependent on the parity of the delay

values (Fig. 2.6). We find that the chimera state is enhanced for the small odd delay

and exists for a larger range of the coupling strength (Fig. 2.6), thus being charac-

terized by a high critical coupling strength for the transition from the chimera state

to the coherent state. Interestingly, as we increase the value of delay, we observe an

immediate suppression of the chimera state for small even delay value, leading to a

smaller critical coupling strength (Fig. 2.6). Therefore, the chimera state is found

to be enhanced or suppressed depending upon the parity of the delay value, pro-

vided the delay value is small. For example, we observe critical coupling strength

εcritical = 0.54 and εcritical = 0.37 for delay τ=1 and τ=2, respectively. However, as

we increase the delay, the chimera state is found to remain suppressed as compared

to the undelayed case regardless of the parity of delay (Fig. 2.6). This suppression

of the chimera state becomes dominant for the large delay values.

The delayed dynamics shows a better spatial clusters formation for mid-range cou-

pling strength as exhibited in Fig. 2.7. An introduction of the delay enhances the

incoherence in the chimera state, the incoherent dynamics of the chimera state be-

comes larger and more pronounced. Furthermore, we find that as the time delay in-

creases, the parameter regime for which chimera state appears, becomes suppressed

leading to a completely coherent state for the mid-range coupling values (Fig. 2.6).

This observation is not surprising as delays are known to enhance the synchroniza-

tion [93, 94]. However, interesting enough, while high delay value enhances the
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Figure 2.6: Phase diagram showing different dynamical regions based on number
of spatial clusters (Nclus) in parameter space of delay (τ ) and coupling strength (ε)
for single layer regular network. The shades (colors) denotes different regions: IS
(incoherent state Nclus = 0), CS (coherent state Nclus = 1) and chimera (chimera
state Nclus > 1). Other network parameters taken are N = 100 and r = 0.32.

synchronization leading to suppression of chimera dynamics, the low odd delay

value is shown to enhance the chimera state (Fig. 2.6).

2.3.3 chimera in the delayed multiplex network: Role of sym-
metric intra-layer delay

Next, we focus on the delayed temporal evolution on the multiplex network. With-

out any delay, the multiplex network exhibits a chimera state for the mid-range of

coupling values. The dynamical behavior of the individual layer of the multiplex

network is found to be exactly same to each other, leading to the identical spatio-

temporal patterns. Here, we consider a multiplex network with two layers to present

our findings. First, we consider a case where we introduce same delay value in the

intra-layer edges on both the layers of the multiplex network with no inter-layer

delay. We find that even with the introduction of delays, which is symmetric in both

the layer, the multiplex chimera behavior is quite similar to the single-layer net-

works. Initially, for very small coupling strength value i.e., in weak coupling range

(ε ≤ 2), we find incoherent dynamics in both the layers. As the coupling strength
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Figure 2.7: Spatio-temporal plot for the chimera state. (a,c) depict undelayed (τ =
0) case whereas, (b,d) depict delayed (τ = 1) case. The coupling strengths are,
(a,b) with ε=0.39 and (c,d) with ε=0.49. The dynamical variable associated with
the temporal evolution is color-coded in the spatio-temporal plots as a function of
time. Other parameters are the same as Fig.2.6.

is increased, the chimera state emerges for mid-range coupling values followed by

a coherent state in both the layers for the strong coupling. Fig. 2.8 presents the

spatio-temporal patterns for different values of the delay and coupling strengths.

We found that the emergent of the chimeric patterns in the layers of the multiplex

network (Fig. 2.8 left column or right column), demonstrate a strong similarity with

each other with no inter-layer delay. However, the nature of the delay plays a crit-

ical role in the transition from the chimera to the coherent state with the increment

of the coupling strength. Analogous to the case of the single layer network, we

find that small odd delay values lead to an enhancement of the chimera state with

high critical coupling strength (εcritical = 0.54 for (τl1 = τl2 = 1)) as presented

in Fig. 2.8 (left column). An immediate suppression of the chimera state is ob-

served for small even delay values (Fig. 2.8; right column). The critical coupling

strength for intra-layer delay (τl1 = τl2 = 2) is found to be εcritical = 0.37. Note

that, there is no inter-layer delay present for both the cases (τ12 = 0). Fig. 2.9(a)

(with τl1 = τl2 = 1) and Fig. 2.9(b) (with τl1 = τl2 = 2) display the enhancement
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Figure 2.8: Spatio-temporal plots for the chimera state with (a,c,e) odd intra-layer
delay (τl1 = τl2 = 1) and with (b,d,f) even intra-layer delay (τl1 = τl2 = 2) in the
layers of the multiplex network. The coupling strengths are, (a,b) ε = 0.31; (c,d)
ε = 0.4 and (e,f) ε = 0.5. Intra-layer delay in both the layers is the same. The
space-time plots presented here are color coded for the first layer (with identical
second layer) of the multiplex network. Dynamical variable associated with the
temporal evolution is color-coded in the spatio-temporal plots as a function of time.
Other network parameters are N = 100 and r = 0.32 for each layer of the multiplex
network.

and subsequent suppression of the value of critical coupling strength (εcritical) as

compared to the undelayed case (with τl1 = τl2 = 0). Depending on the nature of

the delay, the chimera state can be enhanced or suppressed to collapse into a co-

herent state. Moreover, we find that this enhancement is destroyed for high delay

values. A high intra-layer delay always leads to the suppression of the chimera state

as compared to the undelayed case. Fig. 2.9(c) and Fig. 2.9(d) display the range

of coupling strength (ε) for which chimera state is observed for high even and odd

delays. A vital point to note here is that despite having intra-layer delays, the indi-

vidual layers of the multiplex network is found to behave like a single network as

long as the delays in both the layers remain the same.
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Figure 2.9: Scatter diagram depicting number of spatial clusters (Nclus) as a func-
tion of coupling strengths (ε) for different delay values, (a) τl1 = τl2 = 1, (Red
circle) (b) τl1 = τl2 = 2 (Green square), (c) τl1 = τl2 = 7 (Blue triangle), (d)
τl1 = τl2 = 8 (Magenta star). The thick black line represents Nclus for the unde-
layed case (τl1 = τl2 = 0). The values demonstrated here are for first layer (with
identical second layer and same intra-layer delay). Other parameters are same as
Fig. 2.8.

2.3.4 Chimera in delayed multiplex network: Role of asymmet-
ric intra-layer delay

Next, we study the trade off between the delay and the multiplexing for occurrence

of the chimera dynamics for delayed multiplex networks. In real-world systems,

having a similar delay for all the layers of the corresponding multiplex network is

very rare. Asymmetric intra-layer delay in layers of the multiplex network leads

to a rich variety of emergence of the chimera state. First, we investigate the dy-

namical behavior of the nodes when a small value of delay is introduced into only

one layer. The chimera dynamics of the delayed layer is found to be enhanced due

to the introduction of small value of odd delay (Fig. 2.11). Mismatch in the delay

value leads to a suppression of the identical behavior of the layers (Fig. 2.10). We

find that for weak coupling strength, the delay (say in layer 2) enforces a coherent

dynamics in the delayed layer while the undelayed layer (say layer 1) still keeps

showing an incoherent dynamics (Fig. 2.10). Although the nodes in one layer are
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Figure 2.10: Snapshots and spatio-temporal plots for the multiplex network for
various coupling strengths, (a,b) are for ε = 0.1; (c,d) are for ε = 0.14; (e,f) are
for ε = 0.17; (g,h) are for ε = 0.24, (i,j) are for ε = 0.49, (k,l) are for ε = 0.52.
Dynamical variable associated with the temporal evolution is color-coded in the
space time plots as a function of time. Other network parameters for each layer of
the multiplex network are N = 100, r = 0.32, τl1 = τ12 = 0 and τl2 = 1.

identically connected to their mirror nodes in another layer, we witness a surprising

co-existence of the coherent and the incoherent dynamic evolution of nodes in the

layers of the multiplex network. One population (layer) exhibits a spatial synchrony

while its mirror population retains asynchronous behavior. We term this particular

state as layer chimera state which can only emerge in a delayed multiplex network.

With an increment in the coupling strength, both layers start exhibiting the chimera

state. For strong coupling strength, the undelayed layer reaches to the coherent state

before the delayed layer as depicted in Fig. 2.10.

Now keeping the same delay value in one layer (say in layer 2), we increase the

delay in another layer (in layer 1). The same value of delay in both the layers leads

to the enhancement in the chimera behavior (Fig. 2.9). However, we find that the

nature of the chimera dynamics in layer 2 remains enhanced regardless of the delay

in layer 1. Moreover, except for the same intra-layer delay, layer 1 always exhibits a

suppressed chimera state as compared to the undelayed case with a small fluctuation

in the critical coupling strength value. Next, our study denotes the impact of par-
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Figure 2.11: Phase diagram and scatter diagram depicting different dynamical re-
gions of the layers of multiplex network with different intra-layer delays. The
shades (colors) in phase denotes different regions: IS (incoherent state Nclus = 0),
CS (coherent state Nclus = 1) and chimera (chimera state Nclus > 1). (a,b) repre-
sents Nclus values for different values of delay in first layer where as (c,d) represents
Nclus as a function of coupling strength (ε) with constant delay in second layer with
(c; τl2 = 1) and (d; τl2 = 2). Other network parameters are same as Fig. 2.8.

ity of delay on the layer dynamics of the multiplex network. We introduce a small

value of even delay in one layer (say layer 2), keeping another layer un-delayed.

We find an immediate suppression of the chimera state in the delayed layer. More-

over, the chimera dynamics in the second layer remains suppressed regardless of

the delay values in the first layer except for for the small value of odd delay in layer

1 where it shows an enhancement. We find that as there is an increase in the delay

value in both the layers, the suppression of chimera state against the enhancement

in coupling strength becomes a dominant trait of the dynamics. Table 2.1 presents

the critical coupling strengths for different delay values for both the layers of a mul-

tiplex network. The higher delay values in both the layers of a multiplex network

lead to a suppressed chimera state even if there is a delay mismatch between the

layers (Fig. 2.11).

The chimera behavior for delayed dynamical evolution (Eq. 2.3) can have a crucial

dependence on the distribution of delays in the layers of the multiplex network. For
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Figure 2.12: Phase diagrams depicting different dynamical regions based on number
of spatial clusters (Nclus) in parameter space of inter-layer delay (τ12) and coupling
strength (ε) for multiplex network consisting of regular network layers. The shades
(colors) denotes different regions: IS (incoherent state Nclus = 0), CS (coherent
state Nclus = 1) and chimera (chimera state Nclus > 1). (a) represents Nclus values
in first layer whereas (b) represents Nclus in second layer with different inter-layer
(τ12) delay values. Other network parameters taken are τl1 = τl2 = 0, N = 100 and
r = 0.32.

a certain range of coupling strength, the appearance of a chimera state can be de-

stroyed and then again resurrected by controlling the parity and the distribution of

delay in the dynamics of the multiplexed layers. Furthermore, it is noticed that the

inter-layer delay did not have any significant effect on the enhancement or suppres-

sion of the chimera state Fig. 2.12. An introduction of the homogeneous inter-layer

delay (τl1 = τl2 = 0 , τ12 �= 0), leads to all the nodes in both the layers experienc-

ing the same delay in the information propagation across the layers and hence does

not bring upon any significant change on the appearance of the chimera states. We

find that even with high inter-layer delay and no intra-layer delay, both the layers of

the multiplex network exhibit exactly the same behavior with chimera state in the

mid-range coupling values.

2.4 Conclusion

In this chapter, we reported an emergence of the chimera in the multiplex networks

with the layers being represented by regular network architecture having non-local
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Table 2.1: Critical coupling strengths for different delay values in the layers of
multiplex network. upper and lower triangles represent εcritical for layer 1 and layer
2, respectively. Other network parameters for each layer of the multiplex network
are N = 100 and r = 0.32.

������εcl2

εcl1 τ(l1) = 0 τ(l1) = 1 τ(l1) = 2

τ(l2) = 0
������0.49

0.49 ������0.49
0.52 ������0.49

0.41

τ(l2) = 1
������0.52

0.49 ������0.53
0.53 ������0.52

0.43

τ(l2) = 2
������0.41

0.49 ������0.43
0.52 ������0.36

0.36

couplings. We find that an emergence of the chimera is identical in the mirror layers

arising due to the underlying symmetry of the network and the initial state. Further-

more, we have presented time-delayed dynamics for non-locally coupled chaotic

maps and had observed a transition from the incoherent to the coherent dynamics

via the chimera states for both single-layer and the multiplex networks. We demon-

strated that the interplay of multiplexing and delay gives rise to a novel spatially

clustered coherent states disconnected by incoherent regions known as chimera

states. The emergence of chimera state in delayed systems shows a high depen-

dency on the parity of the delay, which is known to influence synchronization of the

coupled dynamics [93, 94]. Here, we had shown that the small odd or even value

of delay leads to an enhancement or suppression,respectively, in the chimera state.

Moreover, a large delay value leads to the suppression regardless of the nature of the

delay. Our investigation has also uncovered the layer chimera state with one coher-

ent and one incoherent layer directly resulting from the enhancement-suppression

behavior of individual layers of the multiplex network depending on the distribution

of the delays. The findings reported in this chapter can provide additional insight

into the formation of spatial clusters in delayed systems. Recently, similarities be-

tween the emergence of chimera state in neural networks and Electroencephalogram

(EEG) reading of a epileptic seizure state have been reported with its possible ap-

plications in early detection of seizure [81, 82]. Our result of the enhancement or

the suppression of chimera state may help in the diagnosis of this kind of seizures
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by introducing a delay in the neural networks. This finding may also contribute to

enhancing our understanding of many biological functions known to show chimera-

like states like uni-hemispheric sleep in humans and certain mammals [76, 77].
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Chapter 3

Promoting chimera through non-identical
multiplexing

3.1 Overview

The multiplex framework approach to network science has provided a new dimen-

sion to complex systems research [87]. We have demonstrated a rich variety of

chimera states, emerging on a multiplex network consisting of two identical regular

network layers, in Chapter 2. However, a multiplex network consisting of identi-

cal network architecture in both layers is not very common in real-world complex

systems [92]. For example, one can consider a multi-modal transportation network,

consisting of layers representing different modes of travel [87]. The air travel layer

may be more sparsely connected than the rail or bus layer and vice versa, depend-

ing on the geographical area. Similarly, a communication network may have much

sparser connectivity in the expensive optical fiber layer than the traditional cable

network layer. Motivated by this, we investigate the behavior of chimera states

for multiplex networks with non-identical layers, possessing properties which are

closer to those of real-world systems in this chapter. We study the emergence of
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Figure 3.1: Schematic diagram depicting a multiplex network consisting of a regular
network and (a) a regular network with different node degree (different value of non-
local coupling range) and (b) random network, respectively. We use this multiplex
architecture as modeled by Eq. (3.1).

chimera states in a homogeneous network of identical elements, which is multi-

plexed with networks not necessarily having an identical coupling environment. We

refer to the network (layer) possessing nodes with identical coupling architecture

as a homogeneous network (layer). We consider a regular network with periodic

boundary conditions (S1; ring) for the homogeneous network. We demonstrate that

the parameter range displaying the chimera state in the homogeneous first layer of

the multiplex networks can be tuned by changing the link density or connection

architecture of the same nodes in the second layer. We focus on the impact of the

interconnected second layer on the enlargement or shrinking of the coupling regime

for which chimeras are displayed in the homogeneous first layer. We particularly

consider two cases, (i) a multiplex network having two homogeneous layers with

different connectivities, (ii) a multiplex network consisting of one homogeneous

and one inhomogeneous layer. We find that a denser homogeneous second layer

promotes chimera in a sparse first layer, where chimeras do not occur in isolation

(i.e., in a single layer). Furthermore, while a dense connection density is required

for the second layer if it is homogeneous, this is not true if the second layer is in-

homogeneous. We demonstrate that a sparse inhomogeneous second layer, which

is common in real-world complex systems, can promote chimera states in a sparse

homogeneous first layer.
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3.2 Theoretical Framework
3.2.1 Construction of the network

Repeating the representation technique of the network, shown in the previous chap-

ter, We construct an undirected multiplex network (with 2N nodes) where the two

layers of the multiplex network are encoded by a set of adjacency matrices {A1, A2}.

Hence, the multiplex network A can be expressed as

A =


A(1) I

I A(2)


 , (3.1)

where A(1) and A(2) represent the adjacency matrix of the first and second layer,

respectively. I is an identity matrix representing links between one-to-one mirror

nodes in two layers.

At first, we have considered regular connection architecture (also represented by

1D or 1D lattice) in the layers of the multiplex network. We described the non-

local coupling range in the layers as P (1) and P (2) neighbors to each side in the

two layers, respectively. This assignment corresponds to a constant node degree

of �k(1)� = 2P (1) and �k(2)� = 2P (2), in layer 1 and layer 2, respectively. Later

on, We have used a multiplex network where one layer is represented by regular

(or 1D) network and another layer by an Erdös-Rényi (ER) random network [28]

or scale-free (SF) network [29]. Note that, we have considered the regular network

as a homogeneous network, referring to the network (layer) possessing nodes with

identical coupling architecture. All other networks (ER and SF) are considered as

an inhomogeneous network (layer).

3.2.2 Dynamics on the network

Here again, we consider a discrete-time logistic map zt+1
i = µzti(1 − zti); zti ∈

R; ∀i=1,...,2N (with µ = 4.0; chaotic regime) as local dynamics to describe state of

the ith node at time t [25, 26]. We further integrate the underlying network topology

as [54]

zt+1
i = f(zti) +

ε

(ki)

2N�

j=1

Aij[f(z
t
j)− f(zti)] (3.2)
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where ki =
�2N

j=1 Aij is the normalizing factor and ε is the overall coupling constant,

assuming 0 ≤ ε ≤ 1. Furthermore the average degree (node degree) of the layers

of the multiplex network is defined as �k� = 1
N

�N
i=1

��N
j=1 A

(1,2)
ij

�
, where N

represents number of nodes in each layer the multiplex network.

3.2.3 Identification of chimera state

The mathematical definition of chimera state referring to the coexisting coherent-

incoherent dynamics has been described in the previous chapter. However, improv-

ing on the measure employed in the previous chapter, we consider a correlation

measure in this chapter to identify chimera state. We define a normalized proba-

bility distribution function g(| D̄ |) of the Laplacian distance measure |D̄(t)| and a

correlation measure [100] as

g0(t) =

� δ

0

g(| D̄(t) |)d(| D̄(t) |) (3.3)

where |D̄(t)| is a vector with components di(t) defined as di(t) = |(zi+1(t)−zi(t))−
(zi(t) − zi−1(t))|} identifies the presence of strong local curvature in an otherwise

smooth spatial profile [101]. The upper limit δ (Eq. 3.3) denotes a small positive

threshold value. The g0(t) essentially measures the relative size of spatially coher-

ent regions, and ideally an intermediate value between 0 and 1 indicates a chimera

state [102]. However, even an incoherent state may have a small portion of nodes

which can cluster together spatially, leading to a non-zero value of g0. We numer-

ically find that 0.4 � g0 � 0.8 provides a best estimation of the parameter regime

displaying Chimera states. We highlight the region in the included figures (in g0−ε

plane) for an easy comprehension.

3.3 Results
3.3.1 Chimeras in multiplex network with connectivity mismatch

First, we consider the case of both layers being represented by a homogeneous non-

local coupling architecture but with a connectivity mismatch between the layers

(Fig. 3.1(a)). Specifically, we choose a non-local coupling range with P (1) and P (2)

neighbors to each side in the two layers, respectively. This assignment corresponds
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Figure 3.2: Snapshots of the
(a) single layer regular net-
work (�k� = 30) and (b) first
layer of the regular-regular
multiplex network with node
degree �k(1)� = 30; �k(2)� =
64. Other parameters: ε =
0.33 and N (1) = N (2) = 100.

to a constant node degree of �k(1)� = 2P (1) and �k(2)� = 2P (2), respectively. We

find that chimera states emerge in the sparse first layer, in contrast to the single

layer case, when it is multiplexed with a dense second layer. Fig. 3.2(a) shows that

no chimera exists for the single layer network (incoherent state), and Fig. 3.2(b)

depicts a chimera in the same sparse layer upon multiplexing with a dense layer.

Furthermore, Fig. 3.3 display that the range of the ε for which the chimera state

exists in the first layer is enlarged as the second layer becomes denser. In Fig. 3.3

(left column), when the second layer has the node degree �k(2)� = 10, a clear

chimera state is only found for a very large value of ε (Fig. 3.3 (c)), whereas for

�k(2)� = 40 (Fig. 3.3 (middle column)) the chimera state exists for a larger range

(Fig. 3.3 (e)-(f)). With further increasing node degree of the second layer, say for

�k(2)� = 64 (Fig. 3.3 (right column)), the chimera state in the sparser first layer

exists for almost all ε values as depicted in Fig. 3.3 (g)-(i).

So far we have kept the degree of the sparse first layer fixed and have varied the

node degree of the second layer, demonstrating that with increasing node degree

of the second layer chimeras occur for a larger range of ε. The same is true if we

fix the node degree of the dense second layer and change the degree of the sparse

first layer. Again, a stronger connectivity mismatch leads to a larger range of ε for
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Figure 3.3: Snapshots of the first layer for a regular-regular multiplex network for
coupling strength, (a,d,g) ε = 0.33; (b,e,h) ε = 0.38 and (c,f,i) ε = 0.44. The
node degrees of the first layer is �k(1)� = 20. The node degree of the second layer
is, (a,b,c) �k(2)� = 10; (d,e,f) �k(2)� = 40; (g,h,i) �k(2)� = 64, respectively. Other
parameters: N (1) = N (2) = 100

which chimeras are observed in the sparser first layer. Note that the dense second

layer still exhibits chimeras in an intermediate ε range (similar to the case where

both layers of the multiplex network consist of dense regular coupling topology)

regardless of the connection density of the sparse first layer [101]. To present a

comprehensive picture of multiplexing with a denser layer that promotes chimeras

in a sparse network, we plot a diagram of the parameter regimes in the plane of the

node degree �k(1)� and ε. The density plot shows the correlation measure g0 of the

sparse first layer (Fig. 3.4). Fig. 3.4 (a) depicts a network with the same node degree

�k� in both layers. Now we keep the node degree of the dense second layer fixed

and vary the node degree of the first layer from very sparse to very dense. Fig. 3.4

(b) shows that there exists a regime of chimera states in the first layer (0 < g0 < 1)

in the (�k(1)�, ε) parameter plane at intermediate values of ε and �k(1)� = 64, which

corresponds to two identical layers. The light-colored region to the very left of

Fig. 3.4 (b), corresponding to a sparse layer (low �k(1)�) multiplexed with a dense

layer, also indicates chimera states in a parameter regime of large ε where they are

not found in a single layer (cf. �k(1)� = �k(2)� in Fig. 3.4 (a)). On the other hand, for

large �k(1)�, where both layers are dense, chimeras are only found in a small range
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Figure 3.4: The normalized correlation measure g0, calculated for layer 1, is plotted
in the parameter plane (�k(1)�, ε) for (a) regular-regular multiplex network with the
same node degree in both layers (�k(1)� = �k(2)� = �k�), (b) nonidentical regular-
regular multiplex network where the second layer has the fixed node degree �k(2)� =
64. Note the chimera tongue around �k(1)� = 64 in (b). Parameters: N (1) = N (2) =
100 and δ = 0.01(max(|D|)) [100]; g0 is averaged over 1000 time steps.

at intermediate values of ε (light color in Fig. 3.4 (b)).

To further illustrate this issue in Fig. 3.5, we plot the correlation measure g0 as a

function of ε for a multiplex network with mismatched node degree of the two lay-

ers. In panel (a) layers, 1 and 2 are sparse, in (b) layer 2 is more densely connected

than layer 1, and in panel (c) both layers are dense. A multiplex network consisting

of two sparse layers has a low value of the correlation measure g0 indicating inco-

herent dynamics in layer 1 (Fig. 3.5(a)). However, with increasing connectivity of

layer 2, the critical coupling strength (i.e., ε value for which the network dynamics

exhibits a transition from the chimera to the completely coherent state) increases in

layer 1, indicating an extended regime of chimeras. In fact, the sparse layer (layer 1)

demonstrates absence of the completely coherent regime (g0 ≈ 1) when multiplexed

with a dense layer (Fig. 3.5(b)). Furthermore, for a multiplex network consisting

of two dense layers, both layers show a typical chimera regime in an intermediate

range of ε as exhibited by identical dense layers (Fig. 3.5(c)). Thus, for multiplex

networks with dense layers, the individual layers do not exhibit any change in the
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Figure 3.5: Correlation measure g0 vs. ε for the first layer of a non-identical regular-
regular multiplex network characterizing the chimera behavior in the sparse layer
as a consequence of multiplexing. Node degrees: (a) �k(1)� = 10, �k(2)� = 10, (b)
�k(1)� = 10, �k(2)� = 64, (c) �k(1)� = 64, �k(2)� = 80. Other parameters as in
Fig. 3.4. The highlighted area indicates the parameter regime for chimera states.

critical ε value for the occurrence of chimera states.

3.3.2 Chimeras in multiplex network with architecture mismatch

Here, we discuss the impact of inhomogeneous network architecture in the second

layer of a multiplex network on the emergence of chimera patterns in the homoge-

neous first layer. We consider a multiplex network where a regular network with

homogeneous nonlocal coupling (layer 1) is multiplexed with an inhomogeneous

network having a random architecture (layer 2), see Fig. 3.1 (b). Since the network

architecture represented by the second layer does not consist of nodes which are

ordered by nearest-neighbor coupling configurations, it is not straightforward to de-

fine chimera states in the classical sense for the second layer. All the figures and

discussions in the following correspond to the dynamics of the regular network in

the first layer. To construct the inhomogeneous layer, first we use an Erdös-Rényi

(ER) network [28]. We consider a multiplex network consisting of a dense regular

network (layer 1) and an ER random network (layer 2). The dense regular network

layer exhibits chimera states at intermediate coupling values without any enhance-

ment (as compared to the single-layer case) regardless of the connection density

of the inhomogeneous ER layer [101]. An interesting phenomenon, however, oc-
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Figure 3.6: Correlation measure g0 vs ε for the homogeneous first layer of a (a)
1D-ER (b) 1D-SF multiplex network. Node degrees �k(1)� = �k(2)� = 10. Other
parameters as in Fig. 3.4. Highlighted area indicates parameter regime for chimera
states.

curs when a sparse regular network layer is multiplexed with a random network.

Unlike the case of multiplex networks consisting of two sparse homogeneous lay-

ers, if one layer is represented by a random connection architecture, for the same

connection density, the homogeneous layer exhibits chimeras. The sparse regular

network layer which does not exhibit chimeras upon multiplexing with a sparse ho-

mogeneous layer (Fig. 3.5 (a)), starts displaying chimeras when multiplexed with

a sparse inhomogeneous layer (Fig. 3.6 (a)-(b)). Moreover, multiplexing with a

sparse ER network is more favorable for the emergence of chimeras in the homoge-

neous layer than multiplexing with a dense layer. The critical ε value in the sparse

regular network increases with decreasing average connection density �k(2)
ER� of the

ER layer (Fig. 3.7). The chimera regime expands as the ER layer becomes sparser.

Fig. 3.7(a) depicts a larger range of ε for which chimeras are observed in the regu-

lar network layer due to its multiplexing with a sparser random layer. One further

point to be noted is that for multiplex networks consisting of two homogeneous lay-

ers, larger average connectivity is more favorable for synchronization in one layer,

however, for multiplex networks consisting of one homogeneous and one inhomo-

geneous (say ER) layer, enhancement in average connectivity of inhomogeneous

layer leads to a shrinking coupling range for which chimeras are observed. Never-

theless, for all combinations of average degree, multiplexing with inhomogeneous
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Figure 3.7: Map of regimes for a multiplex network consisting of one 1D layer and
one inhomogeneous layer, where g0 is calculated for layer 1: (a) 1D-ER multiplex
networks and (b) 1D-SF multiplex network. The first layer has the node degree
�k(1)� = 10. Other parameters as in Fig. 3.4.

layers yields a larger coupling range for chimeras than multiplexing with a homo-

geneous layer. Furthermore, to demonstrate the robustness of (i) the emergence of

chimera states in a sparse regular network layer upon multiplexing with an inhomo-

geneous layer, and (ii) shrinking of the range of ε for which chimeras are observed

in a sparse regular network layer with increasing connection density of the inho-

mogeneous region, we consider a multiplex network consisting of a regular and a

scale-free (SF) layer. The SF network is generated using the preferential attachment

model [29]. For this arrangement as well, chimera states emerge in the sparse ho-

mogeneous layer upon multiplexing with another sparse SF network. Additionally,

an increase in the average connectivity of the SF network �k(2)
SF � yields a similar

shrinking of the chimera regime in the sparse regular network layer (Fig. 3.7(b)).

Furthermore, similar to the dense 1D-ER multiplex network, a 1D-SF multiplex

network consisting of a dense regular network layer does not show any enhance-

ment or suppression of the chimera state occurring in the regular network layer as

compared to the corresponding single layer regular network regardless of the con-

nection density of the layer that it is multiplexed with [101]. The reason behind

the emergence of chimera states upon multiplexing with an inhomogeneous layer
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in those sparse networks which do not exhibit chimeras upon multiplexing with a

homogeneous a layer of the same average connectivity seems to lie in the existence

of high degree nodes in the inhomogeneous layer. To obtain high degree nodes in

a layer of a regular-regular multiplex network, one needs to enhance the average

connectivity of the layer. Hence, we find chimeras for the sparse regular - dense

regular multiplex network and do not observe chimeras when both homogeneous

layers are sparse. Whereas for a 1D-ER multiplex network, even if both layers are

sparse, there may be a large mismatch in the degrees of a few pairs of mirror nodes.

For 1D-SF multiplex networks, multiplexing has a more pronounced effect which

may arise from a higher degree mismatch for a few pairs of mirror nodes due to the

existence of hub nodes in the SF layers (Fig. 3.6).

3.4 Conclusion

To summarize, we have shown that the occurrence of chimera state in a layer of a

multiplex network depends not only on the coupling strength or the initial condi-

tion but also on the network architecture of the layers that it is multiplexed with.

Multiplex networks with non-identical layers promote the appearance of chimeras

in a sparse homogeneous layer. Furthermore, our investigations reveal that by con-

trolling the node degree of one layer in the multiplex network, one can tune the

coupling strength for which chimeras are observed in the other layer. Moreover, the

behavior of chimeras in the layer with homogeneous coupling depends on the archi-

tecture of the other layers in multiplex networks. If both layers are homogeneous,

multiplexing with a denser second layer promotes the occurrence of chimeras in the

sparse first layer, whereas, if multiplexing is done with an inhomogeneous layer, it

enhances the parameter range for the appearance of chimera states in the homoge-

neous layer even if both layers are sparse. The emergence of chimeras in networks

upon multiplexing with an inhomogeneous layer as well as enhancement of the

coupling range for which chimeras appear in the sparse layer is more prominent if

multiplexing is done with a ScaleFree network. The results presented in this chapter

may help us to gain deeper insight into the emergence and impact of chimera states
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in real-world networks which inherently possess a multi-layer architecture.
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Chapter 4

Enhancing chimera through inhibition

4.1 Overview

Chimera, referring to a hybrid state displaying coexistence of a coherent-incoherent

dynamics, provide a powerful tool to understand the transition from incoherence

to complete coherence [31, 32]. Recent literature has indicated a strong connec-

tion between the emergence of chimera state and neural activities of the brain net-

works [20]. For example, chimera state has been related to uni-hemispheric sleep

in mammals where half of the brain remains asleep while other half remains ac-

tive [76, 77] which is akin to the coexisting coherent and incoherent spatio-temporal

patterns of chimera state. Moreover, various brain diseases have been linked to

chimera states [104]. Recent literature has shown that spatio-temporal correlation

profiles, obtained from EEG readings of ecliptic seizures, bore striking similarities

with hybrid patterns of chimera state [81, 82].

In this chapter, we investigate another aspect of neuronal dynamics, which is in-

hibition. Inhibition means to restrain or to reduce some phenomena or actions. Inhi-

bition plays a crucial role in various cognitive functions of brain [105, 106] as well
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Figure 4.1: Schematic diagram of multiplex network consisting of two layers. Each
layer is represented by identical regular network (S1 ring), where each node (open
circle) has the same coupling architecture. In the second layer of the multiplex
network, nodes are (a) attractively coupled, (b) repulsively coupled with probability
pin, (c) all repulsively coupled corresponding to pin = 1. Inter layer connections
between two layers are represented as dashed lines.

as several biochemical functions in living bodies [107]. Furthermore, inhibition

has also been considered in ecological networks to interpret complex predator-prey

interactions among various species [108]. In the network literature, the inhibitory

coupling is depicted by a repulsive coupling between the nodes of a network. A

node is termed as an inhibitory node if all the edges connected to that node are in-

hibitory. Therefore, an inhibitory node inhibits or restrain the coupling influence

from its neighbors. The repulsive couplings may either destroy a synchronized state

leading to the incoherent evolution [110] or lead to an emergence of new synchro-

nization regimes in addition to the multi-stability phenomenon [111]. The emer-

gence of the chimera state under attractive and repulsive couplings in a globally

coupled single-layer (monoplex) network has already been reported [43].

Here, we furthermore bring a different approach considering the more realis-

tic multiplex framework. Specifically, we demonstrate the emergence of chimera

state in one layer which can be controlled by changing the probability of repul-

sive couplings in another layer of a multiplex network. We present the impact of

multiplexing of a layer having inhibitory (repulsively coupled) oscillators on the oc-

currence of chimeras in the layer having excitatory (attractively coupled) identical

oscillators. We report that there exists an enhancement in the appearance of chimera
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state in one layer of the multiplex network in the presence of repulsive coupling in

the other layer. Additionally, we show that a small amount of inhibition or repul-

sive coupling in one layer is sufficient to yield chimera state in another layer by

destroying its synchronized behavior.

4.2 Theoretical Framework
4.2.1 Dynamics on Network

Following the network architecture, considered in chapters 3 & 4, we consider a

multiplex network where the architecture of individual layer is represented by a

regular network (S1; ring) network with periodic boundary conditions (Fig. 4.1).

However, in this chapter, we use the famous Kuramoto oscillators [112] with diffu-

sive coupling to showcase our findings. We express the temporal evolution of the

underlying system by a state vector θ consisting of components θi, i = 1, ..., 2N

representing phase of the ith oscillator. Dynamical equation of the network state

integrating the network topology can be written as follows [113]

θ̇i = ωi + λ
N�

j=1

Aij(sin(θj − θi + α)) (4.1)

where ωi depicts natural frequency of the ith oscillator and λ represents the strength

of the diffusive coupling. α is a constant phase lag parameter required for emer-

gence of chimera state in a regular network of identical phase oscillators [2, 3].

We have considered a constant natural frequency ω = ωi ∀i for all oscillators to

maintain identicality of the coupled units, a pre-requisite of definition of chimera

states [2, 3].

4.2.2 Introduction of inhibition (repulsive coupling)

We again describe the architecture of the multiplex network A) as,

A =


A(1) I

I A(2)


 , (4.2)

for a bi-layer multiplex network where A(1)(A(2)) represents adjacency matrix of the

first (second) layer consisting of 1 or 0 entries depicting connected or disconnected

pairs of nodes respectively.
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We study the behavior of chimera state in the first layer (A(1)) in the presence of

repulsive couplings among the same pair of nodes in the second layer (A(1)). In

our multiplex framework, the first layer is attractively coupled (i.e., with all pos-

itive entries in the corresponding adjacency matrix A(1)) and the second layer is

repulsively coupled (i.e., with all negative entries in the adjacency matrix A(2)).

Henceforth, to avoid confusion, we will refer the first layer A(1) as a positive layer

and the second layer A(2) as a negative layer. As par with the definition of the mul-

tiplex network (Eq. 4.2), we consider simple positive one to one coupling (identity

matrix) for inter-layer interactions throughout the paper. Furthermore, we introduce

inhibitory nodes in the second layer (A(2)) by selecting a node (a row in A(2)) with

an probability (pin). We name the probability as inhibition probability (pin). Inhi-

bition probability approximately decides the fraction of nodes in the second layer

that will become inhibitory. For inhibition probability, pin = 1, the second layer

of the multiplex network becomes completely inhibitory or negative. Choosing a

node to be inhibitory, leads to change in all the coupling associated to that node to

inhibitory coupling (changing the signs of each 1 entry to −1 in the corresponding

row of A(2)). For an arbitrary chosen inhibitory node i,

a
(2)
i,j =




−1 if i ∼ j

0 otherwise

We study occurrence of the chimera state in the first layer (A(1)). The introduction

of inhibition destroys the identical coupling environment of the second layer (A(2))

except for pin = 1 case where all couplings are negative. Due to this non-identical

coupling in the negative layer, chimera state cannot be defined in the classical sense

in that layer.

4.2.3 Identification of chimera

In chapter 3, we have provided a detailed discussion of the mathematical definition

of the chimera and the correlation measure to identify the chimera state. However,

we again provide a description for the correlation measure [34, 100] for identifying

chimera in phase oscillators along with a figure describing the considered initial
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Figure 4.2: (a) Realization of the initial condition which is taken from a uniform
random distribution multiplied by a Gaussian profile. The Gaussian is of the form
θi(t = 0) = exp[−30( i

N
− 1

2
)]. Same initial condition is considered for both the

layers of regular - regular multiplex network, (b) Snapshot of spatial phase profile
of kuramoto oscillators of the first layer of the multiplex network consisting of two
attractively coupled layers, (c) Laplacian distance measure |D̄| of the spatial phase
profile (d) normalized probability distribution function g(|D̄|) of the Laplacian dis-
tance measure |D̄|. Parameters: Network size N = N1 = N2 = 100, node degree
�k1� = �k2� = 64, coupling strength λ = 1.29, natural frequency ω = 0.5 and lag
parameter α = 1.45.

condition, chimera state and the origin of the correlation measure, to enhance the

comprehension in this chapter further. We have characterized the chimera state by

studying the coexistence of spatial coherence and incoherence. The dynamical state

of the network of phase oscillators can be mapped using the global order parame-

ter [19]. However, to capture varying local dynamics for chimeras, we again adopt

a correlation measure apt of identifying chimera states. We use a normalized prob-

ability distribution function g(|D|) of the Laplacian distance measure |D| and the

correlation measure [100]

g0 =

� δ

0

g(|D|)d(|D|) (4.3)

where |D| = ∇2
i θ = {di(t) : di(t) = |(θi+1(t) − θi(t)) − (θi(t) − θi−1(t))|} de-

picts presence of a local curvature (signifying incoherence) in an otherwise smooth

spatial profile (signifying spatial coherence (Fig. 4.2). Here, δ is a small threshold
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value that sets a clear boundary between the coherent and incoherent states. Effec-

tively, g0 represents effective size of the coherent region in the spatial profile of θ

at a particular time. The value of g0 takes 0 for a complete incoherent state and 1

for the complete coherent state. A value between 0 < g0 < 1 theoretically signifies

existence of coherence-incoherence i.e. the chimera state [34]. Though, the corre-

lation measure g0 identifies the chimera state, certain chimera states, for instance,

breathing [62] or traveling [63] chimera, are known to depict regular repetitive pat-

terns in the course of time evolution. A snapshot illustrates the chimera profile

for only a fixed time point. To overcome this constraint, we have considered the

average of the correlation measure g0 over 1000 consecutive time steps after an ini-

tial transient. Further, we have used a uniformly distributed random number with

a Gaussian envelop to satisfy special initial condition requirement of the chimera

state for Kuramoto Oscillators as depicted in Fig. 4.2(a).

4.3 Results

We present results for dynamical evolution of coupled Kuramoto oscillators on mul-

tiplex networks with both layers represented by regular networks. In the first layer,

all the nodes are attractively coupled, whereas in the second layer the nodes are con-

nected via either attractive or repulsive coupling with the probability pin deciding

the population of inhibitory nodes.

4.3.1 Multiplexing with a completely inhibitory (repulsively cou-
pled) layer

First, we consider a multiplex network where in one layer all nodes are positively

(attractively) coupled and in another layer all nodes are negatively (repulsively)

coupled. We particularly compare dynamical state of the positive layer for the fol-

lowing two cases; (I) a multiplex network consisting of two layers with attractive

couplings in both the layers, and (II) a multiplex network with one attractive and

one repulsive layer. For the case (II), all the entries in A(2) are negative correspond-

ing to pin = 1. We study changes in the oscillator dynamics in the positive layer

when it is multiplexed with another positive layer (case (I)), with that of negative
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Figure 4.3: Normalized probability distribution function g(|D̄|) for the Laplacian
distance measure |D̄| of the first layer of the regular-regular multiplex network con-
sisting of (a) two positive layers, and (b) positive-negative layers. Parameters: Net-
work size N = N1 = N2 = 100, node degree �k1� = �k2� = 64, natural frequency
ω = 0.5 and lag parameter α = 1.45.

layer (case (II)). Note that, due to the symmetric coupling environment for both

the layers in the multiplex network, we can define chimera state for both the layers

separately in this particular combination (i.e. for pin = 1). Fig. 4.3 plots the cor-

relation measure indicating the range for appearance of chimera state as a function

of coupling strength. We find that for lower coupling values, for both the cases,

positive layer shows chimera state as depicted by 0 < g0 < 1 values of the cor-

relation measure (Fig. 4.3). It should be noted that a high value of the correlation

measure (g0 ≈ 0.64) at coupling strength λ = 0 arises from the fact that without

the coupling, the oscillators evolve with their constant natural frequency resulting

in the same spatial profile considered for the special initial condition.

Interestingly, we observe a contrasting behavior in the middle coupling range

(2 � λ � 4). For the case (I), the oscillators demonstrate a transition to the synchro-

nized state represented by g0 = 1 whereas the case (II) demonstrates an intermediate

correlation value (0.3 � g0 � 0.7) representing the chimera state. Fig. 4.4 (a) &

(e) exhibit a completely synchronized state in the positive layer when multiplexed

with another positive layer (case (I)). Fig. 4.4(b) & (f) show a chimera state in the

positive layer upon its multiplexing with a negative layer (case (II)). Furthermore,

Fig. 4.4(c)& (d) provide another illustration of this destruction of synchrony and

an enhancement in the chimera state for different coupling strength. Fig. 4.4(e)-(h)
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Figure 4.4: Snapshots and spatio-temporal patterns depicting emergence of chimera
in positive layer upon multiplexing with a negative layer. The regular-regular mul-
tiplex network consists of (a,c,e,g) two positively coupled layer, (b,d,f,h) positively
and negatively couples layers. (a,b,c,d) presents a snapshot of the spatio-temporal
patterns presented in (e,f,g,h) respectively. The figures represents emergence of
chimera in case of multiplexing with negative layer at coupling strength λ = 1.86
(a,b) and at λ = 3.7 (c,d). Other parameters are same as Fig. 4.3

represent the spatio-temporal patterns corresponding to Fig. 4.4(a)-(d),respectively,

indicating that the emerged chimera state is stable with time. Moreover, the com-

pletely synchronized state for the case I demonstrate a periodic temporal evolu-

tion [114]. Replacing one positively coupled layer with a negatively coupled layer

makes the stable periodic evolution unstable leading to a hybrid spatial chimera pat-

tern [114]. This observation highlights the importance of repulsively coupled layer

which causes an occurrence of chimera state in a attractive coupled layer due to the

multiplexing.

4.3.2 Multiplexing with a partially inhibitory (repulsively cou-
pled) layer

Next, we investigate the impact of inhibitory nodes in one layer on the emergence of

chimera state in another layer. Again, we consider a multiplex network consisting of

two layers where first layer (A(1)) has all positive couplings (thus termed as positive

layer). The inhibitory nodes are introduced in the second layer (A(2)) with inhibition

probability pin. Fig 4.1 (c) depicts a schematic diagram of such arrangement in

multiplex network and Fig. 4.5 (a) shows plot of a multiplex adjacency matrix where

inhibitory nodes (represented by black lines in right-down block) are introduced
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Figure 4.5: (a) Plot of the adjacency matrix of regular-regular multiplex net-
work consisting of one positive and one inhibitory layer with inhibition probability
pin = 0.1. The black lines in the down-right block represents the rows correspond-
ing to inhibitory nodes. (b) Normalized probability distribution function g(|D̄|) of
the Laplacian distance measure |D̄| of the positive layer as a function of inhibi-
tion probability pin. Inset: Snapshot and spatio-temporal profile of the first layer
of a multiplex network consisting of one positive layer and one inhibitory layer.
Parameters: Coupling strength λ = 3.57, Inhibition probability pin = 0.1, Other
parameters are same as Fig. 4.3.

with an inhibition probability pin = 0.1. In this setup, a particular pair of nodes

in A(2) may interact via either positive or negative couplings decided by pin. We

find that an introduction of even a small number of the inhibitory nodes is sufficient

to destroy synchronized regime in A(1) and causes an enhancement in the range

of couplings strength for which chimera is appeared in the positive layer. Fig. 4.5

depicts variation of the correlation measure with respect to the inhibition probability

pin for a sufficient large coupling strength (λ = 3.57). Two extreme situations, i.e.

pin = 0 and pin = 1 correspond to a completely synchronized state (g0 = 1) and

a chimera state (g0 ≈ 0.34) respectively, which is not surprising as discussed in

the previous section. However, the interesting fact is that even a small amount of

inhibition in the repulsive layer (say pin = 0.1) is sufficient to yield a non-zero

correlation value (g0 ≈ 0.65) for the attractive layer depicting chimera state. Inset

figures of Fig. 4.5 manifest this phenomena of appearance of the chimera state at

low inhibition probability.
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4.4 Conclusion

To summarize, we have explored an impact of inhibitory (repulsive) coupling in

one layer layer on dynamical behavior of another layer in a multiplex network. We

have systematically studied impact of inhibition by inserting inhibitory nodes with

a probability pin which is varied from zero to one. The case pin being zero corre-

sponds to a multiplex network consisting two identical layers with each layer having

attractively coupled nodes. The another extreme case pin being one corresponds to a

multiplex network consisting of two layers which are structurally identical but vary

in the nature of coupling, i.e., one layer has all attractively coupled nodes whereas

another layer has all repulsively coupled nodes. We report that the range of param-

eters for which chimera is demonstrated in one layer can be controlled by changing

probability of inclusion of inhibitory coupling in another layer. Importantly, we

found that a very small number of inhibitory nodes can bring an enhancement in the

appearance of chimera state destroying the synchronized state.These results pro-

mote importance of the multiplex framework to model those real-world complex

systems which posses more than one type of interactions among their constituents.
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Chapter 5

Engineering Chimera states

5.1 Overview

The emergence of the chimera state provides a powerful tool to study the dynam-

ical path from asynchrony to complete synchrony and help to probe deeper into

the mechanism of partial synchronization [31, 32]. Further, due to its new-found

importance, special attention has been paid [116–122] to the emergent partial syn-

chronous patterns of chimera states. There have been persistent efforts to control

the chimera states [65–67]. In preceding chapters, several approaches are presented

on controlling the parameter regime for which, the chimera state appear employing

using several factors such as system-wide delay, and others [34, 53].

In this chapter, we approach the problem of managing the chimera states by intro-

ducing heterogeneous delay on the edges of both monoplex (single layer) and mul-

tiplex (multi-layer) network. The presence of heterogeneous delays in a network

represents a more realistic scenario in the context of real-world complex systems.

Due to the finite speed of information transmission, delay naturally arises between

the nodes interacting through edges. Moreover, since the connection channels are
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subjected to non-identical perturbations from its surroundings, the heterogeneously

delayed interactions between nodes are a naturally occurring phenomenon.

Here, we demonstrate that the chimera state can be engineered in initially com-

pletely coherent dynamical state, by installing heterogeneous delays in a fraction

of intra- and inter- layer links in sequence for monoplex and multiplex networks,

respectively. We first demonstrate that the position and the extent of the region(s) of

incoherence, thus, in turn, the chimera state can be controlled by suitably introduc-

ing the heterogeneous delays in sequence in intra-layer connections in a particular

portion of the monoplex network.

Furthermore, We extend the recipe to engineer he chimera state in multiplex net-

works by introducing heterogeneous delays in a fraction of inter-layer links, referred

to as multiplexing-delay, in a sequence. Additionally, we show the emergence of the

incoherence in the chimera state can be regulated by making an appropriate choice

of both inter- and intra-layer coupling strengths, whereas the extent and the position

of the incoherence regime can be regulated by appropriate placing and strength of

the multiplexing delays.

We also show that such manufactured chimera is independent of initial condi-

tions, which is otherwise conventionally mandatory for the existence of chimera in

coupled maps. Additionally, we introduce an entirely new way to detect the chimera

by borrowing an eigenvector localization measure from spectral graph theory.

5.2 Theoretical Framework

Here, we again provide a brief description of the chimera and the networks for ease

of reading the results presented in this chapter.

5.2.1 Chimera state

A chimera state is defined as a hybrid dynamical state consisting of coexisting co-

herent and incoherent domains that appear in structurally symmetric networks. As

mentioned, we consider a regular network architecture with the periodic boundary

condition (S1; ring) to showcase the occurrences of the chimera state. The coherent
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dynamical sate on the network can be expressed as [52]

lim
N→∞

sup
i,j∈UN

ξ (l)

| xi(t)− xj(t) |→ 0 for ξ → 0 (5.1)

where UN
ξ (l) = {j : 0 ≤ j ≤ N, | j

N
− l |< ξ} represents the neighborhood

of a node in regular(ring) network (l ∈ S1). Thus, the dynamical state assumes

a profile such that all the nodes possess low spatial distance with their neighbors,

approaching a smooth spatial curve of a coherent state in the asymptotic limit of

N → ∞. Any break in the profile,i.e., high spatial distance in neighboring nodes,

is denoted as the incoherence [34]. Therefore, the snapshots or the spatial curves

refer to a chimera state if a smooth region (the coherent part with closely placed

neighboring nodes) coexist with a region characterized by scattered points (the in-

coherent part with distantly placed neighbors). Furthermore, a complete coherence

can be attributed to the state when all nodes assume the same constant value with

zero spatial distance in neighbors, thus producing a straight spatial curve [34, 113].

5.2.2 Construction of networks

In the current chapter, we focus on demonstrating chimera in both monoplex and

multiplex networks, arising due to distinct time-delays present in a fraction of the

intra- and inter-layer links, respectively. To achieve this, we consider first consider

a monoplex network with regular connection architecture (S1: ring) consisting of N

nodes. The monplex network is represented by adjacency matrix A such that [34]

Ai,j =




1 if i ∼ j

0 otherwise
(5.2)

Furthermore, we construct an undirected multiplex network from two identical reg-

ular networks, each having N nodes. Two layers of the multiplex network are en-

coded by a set of adjacency matrices {A1, A2}, hence multiplex network A can be

expressed as [54]

A =


 A1 DxI

DxI EyA2


 , (5.3)

where I is an identity matrix representing links between one-to-one mirror nodes

in two layers. The parameter Dx represents multiplexing strength by which a node
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and its counterpart in another layer impact each other’s dynamics. The parameter

Ey denote a scaling parameter for intra-layer coupling strength of a layer [115].

We define coupling matrix as C = εA, for monoplex networks and C = εA,

for multiplex networks. The element Cij denotes the effective coupling strength

between ith and jth nodes with ε ∈ [0, 1] representing the overall coupling strength.

sm

5.2.3 Dynamical evolution on networks

The dynamical state of the nodes at time t can be represented by a real variable

xi(t) ∈ R, ∀i = 1, ..., N . The time evolution of the dynamical state of nodes can

be written in terms of a time discrete map xi(t + 1) = f(xi(t)) where we consider

famous logistic map f(x) = µx(1−x) in chaotic regime (µ = 4.0) [26] as local dy-

namics. The simplistic framework of logistic map [25] have been used to understand

diverse spatio-temporal phenomena in a wide range of real world networks among

which chimera has also been shown in both single [52] and multiplex [53, 54] net-

works. Adding the network architecture, the dynamical evolution equation for the

whole network can be written as [54]

xi(t+ 1) = f(xi(t)) +
1

(ki)

�

j

Cij[f(xj(t− τij))− f(xi(t))] (5.4)

where i = 1, . . . , N , for monoplex networks and i = 1, . . . , 2N for multiplex

networks, respectively. ki =
�

j Cij describe the normalizing factor. We further-

more introduce delay in the dynamics by delay matrix τ whose symmetric element

τij = τji represents delay between ith and jth node. The entries of the delay matrix

τ depends on the intended investigation.

5.2.4 Delay driven engineering scheme

A chimera state refer to a hybrid state consisting of a coherent region (CR) and an

incoherent region (ICR) which coexist simultaneously. Here, initially we engineer

chimera state in monoplex networks by introducing delays in sequential intra-layer

links (Fig. 5.1 UP). Therefore, the delay matrix τ is represented by a N ×N matrix

whose elements describe the delays between the nodes of the network. In the case
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Figure 5.1: Schematic diagram of
the proposed engineering scheme
for designing the incoherent re-
gion (ICR) and, in turn, the
chimera state in single layer (up-
per panel; UP) and multiplex net-
work (lower panel; LP). Parame-
ters are N = 100, �k� = 64 for
both single-layer network and for
individual layers of the multiplex
network.

of homogeneous delay,τij takes the same value for all the edges of the network,

Whereas τij is a random variable taken from a uniform distribution bounded by

0 ≤ τ ≤ τmax for heterogeneous delay case where delayed nodes are placed in

particular spatial positions of the network. Thus, τmax represents the upper limit of

the random entries of the delay matrix. Note that a delayed node means the node

with all the edges originating from it is delayed (Fig. 5.1 UP).

Furthermore, we design a chimera state in a multiplex network by choosing a

fraction Nτ of the inter-layer links in a sequence (Fig. 5.1 LP). Each chosen link

is then assigned a delay value selected uniformly randomly in the range 0 ≤ τij ≤
τmax. Note that, for the present case, the symmetric upper right and lower left blocks

I of the adjacency matrix A possess the inter-layer delayed links.

5.2.5 Spatial Inverse participation Ratio (sIPR): A measure for
identification of chimera

Due to the peculiarity of the spatial profiles of chimera state, a plethora of measures

had been put forward in literature [53, 96, 100, 123]. In this chapter, we propose a

new measure borrowed from the eigenvector localization concepts [124, 125] of the

spectral graph theory. The inverse participation ratio (IPR), in the classical sense,

refers the contribution of elements in a eigenvector(state) [126–128]. Following the

trend, we define the spatial inverse participation ratio (sIPR) as
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Figure 5.2: Diagrams representing (b)-(e) snapshots of the state variable (xi) and
(f)-(i) Laplacian distance variable (di), respectively, for different dynamical states
for the regular network (S1 ring) corresponding to various sIPR values as men-
tioned; [(b) and (f)] for ε = 0.1 and sIPR = 0.029, [(c) and (g)] for ε = 0.34 and sIPR
= 0.048, [(d) and (h)] ε = 0.4 and sIPR = 0.25, [(e) and (i)] ε = 0.76 with sIPR =
0.015, where ε is the coupling strength as mentioned Eq.5.3 and coupling matrix as
C = εA. Other parameters are same as Fig.5.1.

sIPR =

�
i(�di�t)4

{�i(�di�t)2}2
(5.5)

where di = |(xi+1(t)−xi(t))−(xi(t)−xi−1(t))|. �di�t depicts an average value

of di over time. Overall di present a discrete second-order differentiation (Laplacian

in general) representing the relative spatial distances between neighboring nodes. A

high value of di corresponds to a large spatial gap between the neighbors of the ith

node, appearing as a discontinuity in the spatial profile (in xi − i plane), whereas a

low value of di indicates that the ith node is spatially close to its neighboring nodes.

If all the di take high values, It represents the incoherent state where all neighboring

nodes have large spatial distance between them. If all the di take low value, it

corresponds to the coherent state where all the neighboring nodes are close by and

form a smooth spatial profile (Fig. 5.2) [34, 113]. However, for both the cases,

the participation of the elements are similar, i.e., all of the entries of di for different

nodes are either high valued or low valued. This data trend of similar entries results

in a low value of sIPR as dictated by the definition of the traditional IPR ((Fig. 5.2))
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[124, 125].

Now, if for a particular system’s parameter, di is high for few nodes and low for few

other nodes, it indicate a chimera state where few nodes are spatially close forming

CR (with low di values) and few others are spatially scattered forming the ICR (with

high di values). Therefore, for hybrid patterns of chimera state, nodes forming the

CR takes low di values, whereas the nodes in ICR produce high di values (Fig. 5.2)

[53, 54]. This breaks the data trend of similar values in di, and we demonstrate that

this break in the trend can be picked up by the sIPR value and can be used to identify

the chimera states. Therefore, a high value of sIPR shows the presence of both high

and low di entries denoting the coexistence of CR and ICR, forming a chimera state.

On the other hand, a low value of sIPR denotes all entries of di are either high or

low, representing an incoherent and a coherent state, respectively (Fig. 5.2).

Traditionally, the IPR value of a eigenvector for a network of dimension N is bound

by 1
N

≤ IPR ≤ 1 [124, 125]. We demonstrate that the incoherent or coherent states

produce sIPR values close to 1
N

, Whereas the chimera state produces a significantly

higher value of sIPR. Due to the lower bound of the IPR, the sIPR automatically

assumes the value 1
N

(with N being network size) for a non-chimera state without

needing any threshold value unlike other measures of chimera state [96]. A point to

note here that, due to the low values of di for the coherent states, sIPR value may

become undefined. In that case, we manually set the IPR value as 1
N

to maintain the

similarity. To summarize, sIPR captures the similarity or dissimilarity in the values

of di to identify chimera state such that it yields values closer to 1
N

for the coherent

or incoherent case. In contrast, it produces a high value for the chimera state.

5.3 Results
5.3.1 Engineering chimera state with heterogeneous delay in the

single-layer network

Information transfer between a pair of interacting nodes takes a finite propagation

time to reach from one node to another node. Therefore, a delayed interaction, par-

ticularly heterogeneous delay, is an intrinsic property of several natural and artificial
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Figure 5.3: Delay matrices and corresponding snapshots of chimera state engi-
neered by heterogeneously distributed delays. The delay matrices are overlapped
with the adjacency matrices to showcase both the delayed and the undelayed edges.
(a) & (c) Regular network with a large and relatively smaller cluster of the delayed
nodes, respectively. These delay configurations result in a large ICR denoted in (b)
and a smaller ICR in (d). (e) & (f) Delay configuration and a corresponding snap-
shot of a chimera state, respectively, with different locations of the ICR. Note due
to the S1 symmetry of the regular ring lattice, the positions are not unique. (b), (d),
& (f) correspond to schematic diagram Fig. 5.1 UP(a), and (g) and (h) represent two
delayed clusters resulting in the multi-chimera state, corresponding to the schematic
diagram Fig. 5.1 UP(b). The (green) boxes represent clusters of the delayed nodes
introduced in the network. Other parameters are ε = 0.77, τmax = 10 and rest are
same as Fig. 5.1.
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networks [27]. For example, in an aircraft network, travel time between two airports

is subjected to weather conditions leading to heterogeneous delays in the system.

Similarly, in a bio-chemical PPI network, the interaction time between two proteins

is subjected to its chemical environment. Here, we investigate the impact of hetero-

geneously distributed delay in a network on the occurrence of chimera states. There

are several investigations on controlling the positions of the CR/ICR, to produce

custom-made chimera patterns [65–67]. We approach this problem of controlling

chimera by introducing delayed nodes in the network. The delayed node means all

the edges originating from that node has a delay selected randomly between 0 to

τmax. We choose a value τmax such that it is larger than the intrinsic time scale of

the underlying dynamical system, which is unity in the case of time -discrete lo-

gistic map considered here [130]. Here we show that the position of the ICR can

be controlled by suitably placing the delayed nodes in a preferred spatial location.

Furthermore, this scheme does not depend on the choice of the τmax (See [129]).

A schematic diagram depicting the protocol for delay distribution on the nodes of

a regular ring network is presented in Fig. 5.1 UP. Fig. 5.1 show the clusters con-

taining the delayed nodes (denoted by red circles in the shaded region) contributing

to the ICR (corresponding to the spatial profiles depicted in Fig. 5.3 (b) & (h)).

Fig. 5.1 UP(a) presents the case where a cluster consisting of neighboring nodes are

heterogeneously delayed. This design produces a chimera state with one ICR and

one CR (Fig. 5.3 (b)). Whereas, Fig. 5.1 UP(b) presents the case of two clusters of

delayed nodes producing multiple ICRs separated by a CR (Fig. 5.3(h)).

Fig 5.3 presents different types of chimera states with a corresponding delay

matrix profile, which is engineered based on our desired output. Fig 5.3(a) presents

a color profile of the delay matrix. The heterogeneous delays are introduced in half

of the nodes, which are clustered together in the terminal position. This protocol

results in a chimera state with one CR and ICR, as depicted in Fig 5.3(b). Note

that the exact position of the ICR coincides with that of the delayed nodes (green

boxes in Fig. 5.3). To highlight the effect, we consider a similar delay matrix as for

the previous example, however, with less number of the delayed nodes (Fig 5.3(c)).
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Figure 5.4: Snapshots of the dynamical state of the regular network for different
delay configurations with (a) being no delay configuration, (b) being homogeneous
delay (τ = 1) case, (c) being heterogeneous distributed delays case (τmax = 10).
Note that the typical spatial profile for chimera state is visible for (c). Other Param-
eters are ε = 0.61 and rest are same as Fig. 5.1

As expected, the spatial profile of the chimera state contains a reduced ICR at the

position coinciding with the position of the delayed nodes. This dependence of

the ICR on the position of delayed nodes holds good even if we introduce a delay

in the central part of the spatial profile, as depicted in Fig 5.3(e) and (f), which

results in one ICR bounded by two CRs. We further demonstrate that by appropriate

engineering of the delay matrix, we can produce multi-chimera states with multiple

ICRs. Fig 5.3(g) shows that the delays are introduced in the terminal positions

separated by a region of undelayed nodes. This brings forward a multi-chimera

state with two ICRs separated by a CR (Fig 5.3(h).

Therefore, the location of the ICR(s) can be controlled by adopting the appro-

priate protocol of distribution of delays on the edges of the network. Note that due

to S1 symmetry of the regular ring network considered in this paper, there is no

unique position of the nodes. However, we have referred to the unique numerical

naming of the nodes (node number 1 to node number N) to refer their positions

for an easy depiction of our results. The relative positions of the single-cluster or

multi-cluster chimera state reflect that an appropriate distribution of heterogeneous

delay can accurately engineer the the spatial profile of the chimera states regardless

of the nomenclature of the nodes.
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5.3.2 Impact of the heterogeneous delay

The previous section demonstrates that the chimera patterns can be engineered by

suitable placement of the heterogeneous delays. However, this fine control is pos-

sible only in the high coupling regions. In these regions, the chimera state does not

appear for the undelayed or homogeneously delayed case. Furthermore, a protocol

of distribution of heterogeneous delays on all the nodes of a network, i.e., all the

nodes in the network are delayed, also does not produce the chimera states. For this

protocol, a direct transition from the incoherent to the coherent states takes place.

In the following, we present an elaborate discussion of this point.

For the partial heterogeneous delay case (i.e., only a few nodes are delayed), an

incoherent evolution is observed in the weak coupling region, followed by a chimera

state in the mid coupling range. This chimera state appearing in the mid-coupling

region is completely random and cannot be controlled using the appropriate place-

ment of the delays. However, the high coupling range yield a drastic change in the

dynamical evolution and we achieve a direct relationship between the position of

delayed nodes and ICRs. Note that, for both the protocols of the undelayed and ho-

mogeneously delayed networks, the high coupling regions yield a coherent dynam-

ics [53] as depicted in Fig 5.4(a) and (b). Fig 5.4(c) demonstrates a chimera state

in the same region engineered by suitably placed heterogeneous delays. Therefore,

we can conclude that the heterogeneous delays not only can lead to an enhancement

in the parameter region for which chimera states appear but also offer control in a

limited parameter regime where we can produce tailor-made chimera patterns.

Furthermore, we find that a complete envelopment of edges by heterogeneous

delays can be harmful to the chimera states. In the previous section, we demon-

strated that the ICR coincides with the heterogeneous delayed nodes. Using this ap-

proach, we had shown that the production of both single and multi-cluster chimera

states could be achieved. However, we had found that if heterogeneously distributed

delays span over all the edges in the network, the chimera state is ceased to exist.

Fig 5.5(a) presents a typical sIPR profile for a homogeneous delay case. We observe

a transition from the incoherent to the coherent state via a chimera state. The mea-
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Figure 5.5: Delay matrices, representing the heterogeneous delay induced in the
network and corresponding sIPR profile for the delay configuration. the delay ma-
trices are overlapped with the adjacency matrices to show both the delayed and the
undelayed edges. (a) A network with homogeneous delay (τ = 1) with a typical
color profile for regular network adjacency matrix, (b) sIPR profile indicating in-
coherent, chimera, and coherent states, respectively. (c) Delay matrix with partial
heterogeneous delay represented by the mosaic pattern extended by shaded region
representing edges with no delay. (d) sIPR profile indicating incoherent and subse-
quent chimera state (e) Delay matrix with full heterogeneous delay represented by
mosaic pattern inhibiting whole adjacency matrix (f) sIPR profile with direct inco-
herent to coherent transition. Other parameters are τmax = 10 (for c & e) , and rest
are same as Fig. 5.1.
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Figure 5.6: Time series of delayed and undelayed nodes of a regular ring net-
work. A snapshot of the nodes (2,3,4,70,71,72) at a particular time can be found
in Fig. 5.10(c) presenting an engineered chimera state. Time series of the node
number 2,3,4 with heterogeneous delays demonstrate a non-synchronized evolution
whereas bottom figure plots time series of undelayed nodes 70,71,72 showing a
synchronized evolution. Other parameters are the same as in Fig. 5.4.

sure sIPR cannot clearly distinguish between the completely incoherent and a com-

pletely coherent state. For example, Fig. 5.4(b) presents that homogeneous delays

(corresponding delay matrix is depicted in Fig. 5.5(a)) renders the coherent state for

the high coupling region. Fig. 5.5(b) presents the enhanced parameter regime for the

appearance of chimera states in the partial heterogeneous delay case where we can

also observe chimera state in the high coupling regimes, as demonstrated in Fig. 5.3

& Fig. 5.4. However, Fig. 5.5(c) shows that sIPR profile maintains a low value re-

gardless of the coupling strength, reflecting a direct transition from the incoherent

to the coherent dynamics. This observation reflects that not only the introduction

of delays but also the exact number of the delayed nodes in a network affects the

CR and ICR distributions. As we increase the number of heterogeneously delayed

nodes, the ICR expands shrinking the CR. However, for a large number of nodes

having heterogeneous delays, the perturbation spreads in the entire network de-

stroying the cohesion of the CR. This can be easily understood from Fig. 5.1 (UP),

where the neighboring nodes of the delayed cluster (green shaded region) posses
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some undelayed and some delayed edges. This imposes a dynamical “tug-of-war”

onto the neighboring nodes. For a sufficiently large delayed node cluster, the rela-

tively small undelayed nodes loose coherence and converts the small CR into ICR

and hence chimera state lost.

This investigation indicates that partial heterogeneous delays play a crucial role

in the emergence of the chimera states. The influence of delayed nodes in the en-

gineering of the chimera state can be explained by comparing the time evolution

of the delayed with those of the undelayed nodes. At high coupling values, the

undelayed nodes reach a coherent state, and the delayed nodes lag due to the ex-

istence of the heterogeneous delays. Fig. 5.6 demonstrates a typical time series

of the six nodes belonging to ICR (Node 2,3, & 4) and CR (Node 70,71,72), re-

spectively, as depicted in Fig. 5.10(c). The time series of undelayed nodes (node

number 70,71,72) reflect a coherent synchronous evolution (bottom subfigure of

Fig. 5.6) whereas heterogeneously delayed nodes (node number 2,3,4) evolve in an

incoherent fashion producing a coherent-incoherent hybrid dynamical state referred

to as chimera. The disorderly “phase lags” introduced by the heterogeneous delays

result in the ICR. Note that an arrangement of partial homogeneous delays will pro-

duce two clusters of nodes having a fixed lag between them. This, in turn, manifests

in two CRs separated by a point discontinuity. To avoid such spatial states, we have

considered a heterogeneous delay in our demonstration.

5.3.3 Engineering chimera state with multiplexing-delays in the
multiplex network

In this section, we explore the emergence of chimera state in the multiplex network

due to the presence of multiplexing-delays, i.e., delays in sequential inter-layer links

in multiplex networks. Furthermore, we demonstrate how the emergent chimera

can be regulated by means of structural parameters of the multiplex network. For

all the simulations, we introduce heterogeneous delays τ ∈ (0, τmax = 20] drawn

from a uniform random distribution, at half of the inter-layer links Nτ = N/2 cho-

sen sequentially, unless otherwise mentioned elsewhere. An identical set of initial

states for the two layers give rise to identical states for both the layers [54]. Hence
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Figure 5.7: Snapshot profiles of the two layers of the multiplex network for (a) the
undelayed interlayer links, (b) the delayed interlayer links with parameters Dx =
1, Ey = 1 and similarly, (c) the undelayed interlayer links, and (d) the delayed
interlayer links with parameters Dx = 1, Ey = 0.6. The inset curve (b(α)) displays
the slight disturbance in (b) in the magnified Y-axis. The parameters are ε = 0.9,
τmax = 20, r = 0.32, N = 100 in each layer.

to demonstrate the robustness of our technique we have opted two distinct sets of

initial states for the maps, which are selected randomly z ∈ [0, 1] for the two mul-

tiplexed layers. The system of networked maps is updated for a sufficiently large

time 5 × 104, and the snapshot of final states of all the nodes for both the layers is

recorded. The coupling parameter is kept fixed at ε = 0.9, so that the system of net-

worked maps initially remains in the coherent state as shown in the Fig.5.7(a) when

there is no delay present in the system (τi,j = 0; ∀i, ∀j). Fig. 5.7(b) presents the dy-

namical profile of the multiplex network in which the induction of delays leads to a

slight disturbance (Fig. 5.7(b); inset α ) in the pattern of coherent state of the nodes.

However, no chimera pattern is observed in this case. The reason is that both the

multiplexed layers are dense networks, and the mirror nodes which are connected

by delayed interlayer links are also connected to a large number of neighbors by un-
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Figure 5.8: Snapshots of both the layers of the multiplex network where half of the
inter-layers edges are heterogeneously delayed for the multiplexing parameters (a)
Dx = 3, Ey = 1, (b) Dx = 5, Ey = 1. Others are the same as described in Fig.5.1
LP.

delayed intra-layer links. Therefore, the delayed mirror nodes fail to get completely

separated from the rest of the coherent nodes in both the layers. This situation

can be made to favor the emergence of chimera by varying structural parameters

in such a way that the perturbative (incoherent) effects arising from delayed inter-

layer links become more dominant. Fig. 5.7(d) shows that the contribution of the

delayed interlayer links can be enhanced by setting Dx and Ey appropriately. How-

ever, Fig. 5.7(c) displays a coherent dynamical profile with the same of Dx and

Ey values (as Fig.5.7(c)), but without the multiplexing delays. Thus, a combina-

tion of a high value of Dx and a very low value of Ey is perfect, along with the

multiplexing delays, to obtain chimera state. In Fig. 5.7(d), chimera state emerges

in the second layer, while the nodes in the first layer experience only faint distur-

bance. Thereby, this recipe helps us to attain complete regulatory control over the

emergence of chimeric patterns in both the layers by suitably choosing Dx & Ey

values. Additionally, we can entirely suppress the chimera inducted by appropriate

placement of the multiplexing delays, in one layer while having the desired chimera

pattern in another layer by tuning the Dx and Ey values.
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Figure 5.9: Snapshots of both the layers of the multiplex network where half of the
inter-layers edges are heterogeneously delayed for the multiplexing parameters (a)
Dx = 5, Ey = 0.2, (b) Dx = 5, Ey = 0.8. Others are the same as described in
Fig.5.1 LP.

5.3.4 Role of the Dx & Ey parameters

Next, we take a closer look at the role of multiplex network’s structural parameters,

namely Ey and Dx to understand the collective dynamical behavior of the layers.

Fig. 5.8, represents chimera states for different choices of Dx with usual scaling

value of intralayer coupling strength Ey = 1. Fig 5.7(b) shows that the usual choice

of Dx = 1, Ey = 1 yields a slight wobbling in the nodes connected with the delayed

inter-layer links. A high value of Dx changes the situation drastically as can be seen

in Fig. 5.8. A high value of Dx causes an enhancement in the connection strength

between each pair of the mirror nodes permitting the interlayer links dominating

over the intralayer links in influence. Thus, the mirror nodes disperse more freely in

both the layers because of the multiplexing delays. Fig. 5.8(a) shows an increment

in the dispersal of nodes connected to delayed inter-layer links (thus, producing

engineered chimera states) in both the layers due to higher values of Dx(= 3). In-

creased Dx induce even larger spatial separation for the mirror nodes in both the

layers even with high value of Ey(= 1). An even more noticeable chimera is ob-

served in Fig. 5.8(b) as the value of Dx(= 5) is higher in this case. Next, we present

the impact of Ey along with a fixed high value of Dx(= 5) in Fig. 5.9. A small value

of Ey dilutes the intralayer contributions among neighboring nodes in the corre-
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sponding layer allowing the nodes to strew more freely under the influence of the

multiplexing delays. In Fig. 5.9(a), the mirror nodes experiencing the multiplexing

delays, show low spatial separation in neighboring nodes in the first layer, whereas

their counterparts in the second layer experience a complete incoherent state due

to very weak Ey. The dispersal of the nodes in the second layer can be tamed

by increasing Ey (see Fig. 5.7(d) and Fig. 5.9(b)). Increment in Ey diminishes

the relative difference between the intralayer coupling strengths of both the layers.

Note that Fig. 5.8 (b) presents a well pronounced chimeric spatial profile, whereas

Fig. 5.7 (b) shows a slight wobble in the mirror nodes experiencing multiplexing

delays, although values of Ey are same in both cases. Thus observed chimera in the

second layer can be made even more pronounced by fine-tuning Ey while keeping

Dx high (see Fig. 5.9 (b)). From these observations, it is apparent that Dx helps

in introducing incoherence in the mirror nodes in both the layers by means of mul-

tiplexing heterogeneous delays, whereas Ey essentially brings in incoherence in a

layer by diminishing coupling intensity of intralayer links. The interplay between

these two parameters can give rise to the emergence of pronounced chimera in only

one layer, while the mirror nodes in another layer can cause only mild disturbance.

Hence, the intensity of chimera states in a multiplex network can be regulated by

inducting heterogeneous multiplexing delays with appropriate choices of the net-

work’s structural attributes. So far, we have demonstrated the existence of chimera

for a few combinations of the parameters DX and Ey, though the control scheme is

applicable for a wide range of values of the parameters. Fig. 5.10 presents phase di-

agrams in Dx −Ey space exploring different emerging states, including chimera in

the multiplex network both in the absence and the presence of the inter-layer delays.

Here the phase Dx −Ey diagrams correspond to a high coupling strength (ε = 0.9)

so as to have the synchronous clusters in the multiplexed layers, which could be

perturbed to explore the existence of chimera by incorporating multiplexing delays.

Note that the schematics and boundaries of phase diagrams in Fig. 5.10 are based

on the variance [131] (upper panels; Fig. 5.10(a,b)) and correlation measure [100].

(g0(t); lower panels; Fig. 5.10(c,d)) defined and discussed in the supporting ma-
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Figure 5.10: A schematic phase diagram of Dx - Ey space for (a) layer 1 and (b)
layer 2 with undelayed inter-layer edges and (c) layer 1 and (d) layer 2 with delayed
inter-layer edges. Half of the inter-layers edges are heterogeneously delayed (in
c & d), and the delay values are chosen from a uniform random distribution with
τmax = 20. The parameters are the same as Fig. 5.7. The boundaries of various
regions are drawn from visual inspection and measures (See SM [132]).
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terial [132]. Panels 5.10 (a) and 5.10 (b) show the coherence profile for Layer 1

and Layer 2, respectively, in the absence of multiplexing delays. Layer 1 displays

completely coherent states spanning the entire Dx −Ey space due to high coupling

strength whereas Layer 2, due to the effective coupling strength Ey ∗ ε, shows co-

herent states (regime II) in the mid-range of Dx−Ey space and completely coherent

states (regime III) for Ey > 0.5. Panels 5.10 (c) and 5.10 (d) exhibit chimera pro-

files for Layer 1 and Layer 2, respectively when the inter-layer delays are present.

Layer 1 shows coherent region (regime I) while Layer 2 shows incoherent region

(regime I) for low values of Ey and engineered chimera states (regime IV) for mid-

and high-range values of Ey. Regime III for both the layers presents un-controllable

chimera in the sense that the shape or area of the incoherence can not be tailored to

ones preference under this parameter regime. Transition region (regime II) in both

the layers yields unidentified states qualified to be neither chimera nor incoherent

states. The difference in the effective coupling strength for Layer 1 (ε) and Layer 2

(Ey ∗ε) accounts for the different Dx−Ey ranges of regime II and regime III for the

two layers. Note that a distinct uniformly colored pattern is used to represent each

region in Dx −Ey diagrams; hence the dotted pattern does not show the qualitative

or quantitative variation in the engineered chimera profiles (IV) with change in the

value of Dx or Ey (as illustrated in Fig. 5.8 and Fig. 5.9). Hence, the phase diagrams

in Dx − Ey space highlight the importance of the network’s structural parameters

in guiding or regulating the emergent chimera in both the layers of the multiplex

network.

5.3.5 Investigating the temporal behavior

A chimera state typically requires a special initial condition for its existence and

generally arises in the mid-coupling range. In our work, the perturbation induced in

the form of heterogeneous delays at coveted position and length of the sequence of

inter-layer links gives rise to the chimera state in the coherent regime. The occur-

rence of such engineered chimera in individual layers of the multiplex network is not

surprising. The inducted multiplexing delays disturb the respective nodes, in turn,
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Region-I Region-II

Figure 5.11: Time series of nodes connected with delayed and undelayed inter-
layer edges along with a diagram of a multiplex network consisting of two identical
regular network layers. Half of the interlayer edges are heterogeneously delayed
(represented by Bold blue lines). Appropriate networking parameters (Dx = 5,
Ey = 0.2) are used to induce chimera in the second layer. Region I (Shaded pink
circle) consists of nodes connected with delayed edges and shown to have an inco-
herent time evolution in the middle panel, whereas the nodes of region II (connected
to undelayed edges) are shown to have coherent evolution in the rightmost panel.
Together, they display a chimera pattern, as shown in Fig. 5.7(c). Other parameters
are the same as in Fig.5.7.

causing dynamical symmetry breaking of the perturbed nodes from the rest of the

nodes in the coherent bulk. We also look at the time-evolution of the perturbed (in-

coherent) and unperturbed (coherent) nodes to get a deeper insight into the chimera

state. Fig. 5.11 shows the time series of six nodes selected from a chimera state, half

of the nodes possessing delayed inter-layer links (node index z107, z108, z109), while

the rest half is possessing undelayed interlayer links (node index z192, z193, z194).

The time series of the delayed nodes (z107, z108, z109) shows a desynchronized time

evolution as the nodes evolve experiencing different delay values. Nevertheless, the

undelayed nodes (z192, z193, z194) maintain their synchronized temporal evolution as

they experience no perturbation. It is important to note that if the interpolated multi-

plexing delays are homogeneous or identical, the impact of the perturbation will be

similar to all disturbed nodes. This will produce synchronous cluster(s), possessing

the same displacement from the main synchronous cluster, whose displacement in

the spatial profile would depend upon the strength of homogeneous delays. How-

ever, this kind of spatial profile with detached synchronous clusters can arguably be

treated either as a cluster synchronized state or as a point-wise chimera state. There-

fore, heterogeneous multiplexing delays are better suited for the demonstration of

engineered chimera, presented in this study.
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Figure 5.12: (Color online) Snapshots of both the layers of the multiplex network
where (a) 20% and (b) 80% inter-layer edges are heterogeneously delayed. The
network parameters are Dx = 5, Ey = 0.2. Other parameters are the same as
described in Fig.5.7.

5.3.6 Designing the incoherent region by multiplexing delays

In addition, the extent of the incoherent region of the chimera state depends upon the

fraction of delayed inter-layer links Nτ . The number of introduced heterogeneous

delays perturbs the same number of the mirror nodes in both the layers to produce

the incoherent region. Fig. 5.12 (a) exhibits a chimera state with a very small inco-

herent region arising due to small Nτ , whereas Fig. 5.12 (b) exhibits a chimera state

having a large incoherent region because of large Nτ . This study demonstrates that

besides regulating chimera state by varying network’s structural parameters, the ex-

tent of the incoherent region of the chimera state can also be regulated quantitatively

by varying fraction of the multiplexing delays.

5.3.7 Designing the Chimera by multiplexing delays in Henon
Map

To verify if the regulating scheme is universally applicable, we also have investi-

gated a multiplex network of non-locally coupled two-dimensional map, described

as [133, 134]

xt+1
i = f(xt

i, y
t
i) +

1

(ki)

2N�

j=1

Cij[f(x
t−τij
j )− f(xt

i, y
t
i)]

yt+1
i = βxt

i

(5.6)

where the local dynamics is governed by the Henon map f(xt
i, y

t
i) = 1 −

α(xt
i)

2 + yt. As displayed in Fig.5.13, a two-dimensional Henon map also shows
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Figure 5.13: (Color online) Snapshot profiles of the two layers of the considered
multiplex network for (a) the undelayed interlayer links, (b) the delayed interlayer
links with parameters Dx = 5, Ey = 0.6. The local dynamics is described by henon
map (Eq. 5.6) with parameters, α = 1.4 and β = 0.3, ε = 0.9, τmax = 20, r = 0.32,
N = 100 in each layer.

an engineered chimera state with delayed inter-layer links with a proper choice of

Dx and Ey parameter in the high coupling regime. Therefore, we deduce that the

regulatory scheme of engineering chimeric pattern(s) can be applied in a variety of

systems with different underlying dynamics provided the system lies in the coherent

regime.

5.4 Conclusions

In this chapter, We have presented a new approach towards control of the emergent

chimera patterns in regular networks. To summarize, we have shown that in a regu-

lar network, the chimera regime can be enhanced with an introduction of the hetero-

geneous delays in the edges. Importantly, the chimera patterns can be designed by

placing the delayed nodes in suitable spatial positions. We have demonstrated that

the location of the incoherent region coincides with the edges having the heteroge-

neous delays. Further, by appropriate distribution of the heterogeneous delays, it

is possible to engineer both the single-cluster and the multi-cluster chimera state.

However, the proposed scheme works only in the high coupling region. Moreover,

for both the undelayed and the homogeneous delayed cases, the high coupling re-

gion manifests an occurrence of the coherent dynamics.

Furthermore, we extend the technique to produce engineered chimera states in
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the multiplex network by using any random initial condition in the presence of het-

erogeneous multiplexing (inter-layer) delays. We induce chimera states in the ini-

tially coherent multiplexed layers by introducing incoherence with the aid of mul-

tiplexing delays. It is also displayed that the emergent chimera can be regulated

to one’s choice both (a) qualitatively by tweaking the degree (level) of inducted

incoherence by making proper choices for multiplex network’s structural parame-

ters such as interlayer and intralayer coupling strengths, and (b) quantitatively by

tweaking the amount of inducted incoherence by varying fraction of the delayed

interlayer links. The above-described control over the behavior of the emergent

chimera can be understood in detail by the phase diagram in the interlayer and in-

tralayer coupling parameters’ space. The proposed scheme is robust against under-

lying time-discrete local dynamics and might be applicable as well to continuous

time dynamical systems in producing engineered chimera states originating from

regular initial conditions. Also there may be cases when delays in the systems are

inevitable, and chimeras may not always be desirable. Such cases present a new

challenge to how naturally existing chimera in a delayed system can be destroyed,

and a modified application of the reported technique can be sought towards the

cause.

Therefore, by introducing the heterogeneous delays, we can generate tailor-made

chimera states in this high coupling region. The heterogeneous delays not only

causes an enhancement in the parameter regime for which chimera appears but also

offers control over chimera patterns in a limited parameter range. Further, we found

that the heterogeneous delays spanned over the entire network destroy the emer-

gence of chimera patterns for any coupling strength. The dynamical systems di-

rectly jump from the incoherent to the coherent state if all the edges of the network

posses heterogeneous delays. This article sheds light on manufacturing engineered

chimera in a monoplex and multiplex network, whose relevance can be found in the

case of neural disorders [33].

The highly complex structure of synapses between neurons in the brain network

is responsible for most of our brain functions [135]. Deterioration of these complex
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interaction pathways may lead to the neural disorders which hinder the brain from

functioning normally. The complex network approach presents a holistic way to

watch all the activities at once and find the anomalies in the emergent pattern within

the framework of network science [136]. Chimera is a promising candidate to detect

these anomalous patterns in the brain. Our technique of producing chimera with

the aid of heterogeneous delays can provide a new direction in understanding the

underlying dynamics behind the emergence of neuronal disorder in the brain as

the delays are inherently present in the neuronal interactions connecting different

functional or structural regions of the brain.

83



CHAPTER 5. 5.4. CONCLUSIONS

84



6

Chapter 6

Discussions and Future Scope

The study of dynamics on networks provides a unique window to perceive the

collective complex behavior of a system consisting of interacting entities. Further-

more, synchronization, a fascinating emergent dynamics arising due to the inter-

acting nodes of a network, holds a special place due to its applicability in diverse

areas of research [11, 19]. Recent literature however, indicates the partial syn-

chronization patterns, termed as chimera state, describing a hybrid dynamics where

a group of entities (nodes) exhibit synchrony while other entities (nodes) display

asynchrony [2, 3], is even more common phenomenon in natural systems [20]. The

new-found importance of chimera state in biological systems allured a large amount

of literature on chimera state [31, 32]. However, despite the availability of a large

volume of research, a systematic study of chimera patterns in a network incorporat-

ing multiplex architecture is scarce. The works presented in the thesis aims to bridge

the gaps by providing an account of investigations pertaining to the emergence of

chimera in multiplex networks and impact of several factors on the appearance of

chimera state, which may be unique to the multiplex networks. Additionally, this

thesis provides a recipe to design the chimera state, which may be very important
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due to the fact that the chimera state is found to play a significant role in neural

dynamics and cognitive functions.

6.1 Summary

In the thesis, we have explored the impact of multiple types of interactions on the

collective dynamical behavior of the entire multiplex network in the context of par-

tial synchronous patterns of chimera state.

First in the second chapter, we present the emergence of chimera in the multiplex

network and the required conditions for the appearance of chimera state. We fur-

ther show that while, the multiplex architecture, retains the type of chimera state,

displayed by the monoplex (single -layer) networks, it changes the regions of the

asynchrony. Additionally, depending on the choice of the initial condition, the lay-

ers of a multiplex network consisting of identical regular networks, display mirror

chimera state regardless of the number layers included. Later on, we had extended

the work, including delayed interactions in both inter- and intra-layer connections

and put forward an extensive study of the parameter regime for which chimera ap-

pears in the multiplex network. We found that interplay of delay and multiplexing

brings about an enhanced or suppressed appearance of the chimera state depending

on the distribution as well as the parity of delay values in the layers. Furthermore,

a large value delay always suppresses the parameter region, for which the chimera

appears. Additionally, we reported a layer chimera state with the existence of one

layer exhibiting synchronous and another layer, asynchronous dynamics, which is

unique to the multiplex networks.

Then, in the third chapter, we showcase the emergence of chimera states in a mul-

tiplex network where the layers of the multiplex network may not be identical.

We mainly consider two cases, (i) a multiplex network having two homogeneous

layers with different connection densities, (ii) a multiplex network consisting of

one identically coupled layer (homogeneous layer) and one non-identically coupled

layer (heterogeneous layer). We demonstrate that the parameter range displaying

the chimera state in the homogeneous layer could be tuned by changing the con-
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nection density or connection architecture of the same nodes in the heterogeneous

layer. We found that a denser homogeneous second layer promotes chimera in a

sparse homogeneous layer, where chimeras do not occur in isolation. Furthermore,

we presented that a sparse heterogeneous layer could promote chimera states in a

sparse homogeneous layer.

Proceeding to the fourth chapter, we show the impact of inhibitory couplings on

the appearance of chimera state. Considering a multiplex network with a layer

having inhibitory (repulsive) coupling and other layer having excitatory (attractive)

coupling, we report an enhancement in the emergence of the chimera state in one

layer, in the presence of repulsive coupling in the other layer. Furthermore, we show

that a small amount of inhibition or repulsive coupling in one layer is sufficient to

yield the chimera state in another layer by destroying its synchronized behavior.

Finally, in the fifth chapter, we turn our attention to the control of chimera states.

We propose a technique to engineer a chimera state by using a specially chosen

distribution of heterogeneous time delays on the edges of a single-layer (monoplex)

network. We demonstrate that control over the spatial location and extent of the

incoherent region of a chimera state in a network can be achieved by appropriate

placement of heterogeneous time delays. Furthermore, we extend the technique

to construct chimera states in the multiplex networks with the aid of heteroge-

neous delays in a fraction of inter-layer links, referred to as multiplexing-delay,

in a sequence. We show that the emergence of the incoherence in the chimera state

can be regulated by making a proper choice of both inter- and intra-layer coupling

strengths, whereas the extent and the position of the incoherence regime can be

regulated by fitting placement and strength of the multiplexing delays. The pro-

posed technique to construct such engineered chimera equips us with both single

and multiplex network’s structural parameters as tools in gaining both qualitative-

and quantitative-control over the incoherent region and, in turn, the chimera state.

To summarize, the thesis put forward an extensive study of the system parameter

space in which chimera state emerges in multiplex networks and explains the role of

several parameters including delay, inhibition, and non-identical multiplexing and
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presents an engineering scheme to gain both qualitative- and quantitative-control

over it.

6.2 Future direction

Of late, it has been realized that the presence of global synchrony is not very com-

mon, and instead, a partial synchronization is more widespread in real-world com-

plex systems. Particularly, the interacting neurons in brain networks are more likely

to show partial synchrony than a complete synchronization, which forms the future

direction of the works presented in the thesis.

Recent advancements in neuroscience, especially in neuro-imaging techniques, brought

a massive influx of data related to neural activities of a system as complex as the hu-

man brain. “Network Neuroscience” which deals with interacting communities of

neurons under network science framework, providing an improved understanding of

the brain, represented as network and, is addressing the challenges in detection and

diagnosis of neural disorders. However, despite the availability of extensive data, a

concrete understanding of the neural interactions is far from complete. The mech-

anism of emergent partial synchronous patterns or chimera state, which is proven

to play a very important role in neural dynamics [33], and its relations to cogni-

tive functions remains an open challenge. Furthermore, it remains to be seen, if

these patterns can be used as a marker for early diagnosis of neural disorders like

epilepsy. This presents a tremendous opportunity for a data-driven investigation on

the role and importance of partial synchrony, shedding light into not only structural

but functional nature of brain networks.

Chimera state has been closely related to various biological processes ranging

from uni-hemispheric sleep in mammals [31, 76, 77] to cognitive process [20] in

human brain networks. Hybrid dynamics of chimera state also has been reported

to emerge in neural networks of two well-studied neural networks of, Cat [79] and

C Elegans [78]. A seizure state has been reported to show a massive collapse of

synchronization before high coherence event of seizure state [80]. Adding to that

works by Andrzejak et al. [81] and Chouzouris et al. [82] indicated the emergence
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of chimera-like patterns at the epileptic seizure onset, i.e., at the transition to a

seizure state in epilepsy. All the investigations indicate that chimera state with

its co-existing synchronous and asynchronous activities play a vital role in neural

dynamics and present a great candidate to develop novel techniques and tools for

early detection and disease diagnosis related to neural systems.

Additionally, recent literature have shown that a neural system showcases a perfect

example of the multi-layer network [137] where the layers may be formed using

anatomical and functional connectivity [138] or frequency-based acclivities [139].

However, a complete study on partial synchronization in the neural system, con-

sidering its multi-layer nature is yet unexplored. Combining both the multi-layer

framework and the network neuroscience, a cross-disciplinary approach to study

the mechanism behind the emergence of partial synchronization, exploring the in-

terplay of structure and function in brain networks and investigation potential usage

of these patterns as a marker in neural disorders, devise a very suitable future direc-

tion for the works pursued in the thesis.
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